Advertisement

Current Breast Cancer Reports

, Volume 9, Issue 1, pp 26–33 | Cite as

CDK4/6 Inhibition in Breast Cancer: Mechanisms of Response and Treatment Failure

  • Ana C. Garrido-Castro
  • Shom Goel
Translational Research (TA King and EA Mittendorf, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Translational Research

Abstract

Purpose of review

The purpose of this review is to describe the role of D-type cyclins and cyclin-dependent kinases (CDKs) 4 and 6 in breast cancer and to discuss potential biomarkers for sensitivity or resistance to CDK4/6 inhibitors.

Recent findings

A small number of preclinical and clinical studies have explored potential mechanisms of CDK4/6 inhibitor response and resistance in breast cancer. Putative markers of response include estrogen receptor positivity, luminal patterns of gene expression, high cyclin D1 levels, and low p16 levels. Possible resistance mechanisms include loss of Rb function, overexpression/amplification of cyclin E, and CDK6 amplification. Most of these remain speculative and have not been validated in clinical specimens.

Summary

If early successes with CDK4/6 inhibitors are to be capitalized upon, it is critical that our understanding of CDK4/6 biology in breast cancer extends beyond its current rudimentary state. Only then, we will be able to develop rational therapeutic combinations that further enhance the efficacy of these agents.

Keywords

Breast cancer CDK4/6 Cyclin Drug resistance Estrogen receptor 

Notes

Acknowledgements

This work was supported by a Career Development Award provided through the Dana-Farber/Harvard Cancer Center SPORE in Breast Cancer (NIH 2015 P50 CA) to Shom Goel.

Compliance with Ethical Standards

Conflict of Interest

Ana C. Garrido-Castro declares no conflict of interest.

Shom Goel has served as a paid scientific advisor to Eli Lilly and conducts laboratory research funded by Eli Lilly.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18(22):2699–711.CrossRefPubMedGoogle Scholar
  3. 3.
    Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6(4):353–67.CrossRefPubMedGoogle Scholar
  4. 4.
    Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature. 2001;411(6841):1017–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell. 2006;9(1):23–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL, et al. The requirement for cyclin D function in tumor maintenance. Cancer Cell. 2012;22(4):438–51.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs. 2014;32(5):825–37.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–53.CrossRefPubMedGoogle Scholar
  10. 10.
    DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res. 2015;21(5):995–1001.CrossRefPubMedGoogle Scholar
  11. 11.
    Walker AJ, Wedam S, Amiri-Kordestani L, Bloomquist E, Tang S, Sridhara R, et al. FDA approval of palbociclib in combination with fulvestrant for the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2016.Google Scholar
  12. 12.
    Beaver JA, Amiri-Kordestani L, Charlab R, Chen W, Palmby T, Tilley A, et al. FDA approval: palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res. 2015;21(21):4760–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Baselga J, Campone M, Piccart M, Burris 3rd HA, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Baselga J, Im S-A, Iwata H, Clemons M, Ito Y, Awada A, et al. PIK3CA status in circulating tumor DNA predicts efficacy of buparlisib plus fulvestrant in postmenopausal women with endocrine-resistant HR+/HER2- advanced breast cancer: first results from the randomized, phase III BELLE-2 trial. Cancer Res. 2016;76(4 suppl):S6–01.Google Scholar
  15. 15.
    Saura C, Sachdev J, Patel MR, Cervantes A, Juric D, Infante JR, et al. Phase Ib study of the PI3K inhibitor taselisib (GDC-0032) in combination with letrozole in patients with hormone receptor-positive advanced breast cancer. Cancer Res. 75(9 suppl):PD5-2.Google Scholar
  16. 16.
    Dickler M, Saura C, Richards D, Krop I, Cervantes A, Bedard PL, et al. A phase II study of the PI3K inhibitor taselisib (GDC-0032) combined with fulvestrant (F) in patients (pts) with HER2-negative (HER2-), hormone receptor-positive (HR+) advanced breast cancer (BC). J Clin Oncol. 2016;34(suppl):Abstract 520.Google Scholar
  17. 17.
    Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24(17):2909–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Blagosklonny MV, Pardee AB. The restriction point of the cell cycle. Cell Cycle. 2002;1(2):103–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci. 2008;121(Pt 23):3853–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol. 2009;220(2):292–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(36):9408–21.CrossRefGoogle Scholar
  22. 22.
    Donjerkovic D, Scott DW. Regulation of the G1 phase of the mammalian cell cycle. Cell Res. 2000;10(1):1–16.CrossRefPubMedGoogle Scholar
  23. 23.
    Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, et al. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 1994;8(24):2939–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999;18(6):1571–83.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer. 2001;1(3):222–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Sicinski P, Weinberg RA. A specific role for cyclin D1 in mammary gland development. J Mammary Gland Biol Neoplasia. 1997;2(4):335–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature. 1994;369(6482):669–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18(1):17.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sutherland RL, Musgrove EA. Cyclin D1 and mammary carcinoma: new insights from transgenic mouse models. Breast Cancer Res. 2002;4(1):14–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Goel S, Wang Q, Watt AC, Tolaney SM, Dillon DA, Li W, et al. Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 inhibitors. Cancer Cell. 2016;29(3):255–69.CrossRefPubMedGoogle Scholar
  31. 31.
    Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20(5):620–34.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Foster JS, Henley DC, Bukovsky A, Seth P, Wimalasena J. Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin D1-Cdk4 function. Mol Cell Biol. 2001;21(3):794–810.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88(3):405–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Winston JT, Coats SR, Wang YZ, Pledger WJ. Regulation of the cell cycle machinery by oncogenic ras. Oncogene. 1996;12(1):127–34.PubMedGoogle Scholar
  35. 35.
    Weber JD, Raben DM, Phillips PJ, Baldassare JJ. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J. 1997;326(Pt 1):61–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci U S A. 1998;95(3):1091–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499–511.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRefGoogle Scholar
  39. 39.
    Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35.CrossRefPubMedGoogle Scholar
  40. 40.
    Infante JR, Cassier PA, Gerecitano JF, Witteveen PO, Chugh R, Ribrag V, et al. A phase I study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin Cancer Res. 2016.Google Scholar
  41. 41.
    Turner NC, Ro J, Andre F, Loi S, Verma S, Iwata H, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–19.CrossRefPubMedGoogle Scholar
  42. 42.
    Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48.CrossRefPubMedGoogle Scholar
  43. 43.
    Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S-A, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39.CrossRefPubMedGoogle Scholar
  44. 44.
    Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon KA, et al., editors. PALOMA-2: primary results from a phase 3 trial of palbociclib plus letrozole compared with placebo plus letrozole in postmenopausal women with ER+/HER2− advanced breast cancer. 2016 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3–7, 2016; Chicago, IL (USA): J Clin Oncol 34, 2016 (suppl; abstr 507).Google Scholar
  45. 45.
    Dickler M, Tolaney SM, Rugo HS, Cortes J, Dieras V, Patt DA, et al., editors. MONARCH-1: results from a phase 2 study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2− breast cancer, after chemotherapy for metastatic disease. 2016 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3–7, 2016; Chicago, IL (USA): J Clin Oncol 34, 2016 (suppl; abstr 510).Google Scholar
  46. 46.
    Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36.CrossRefPubMedGoogle Scholar
  47. 47.
    Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle. 2012;11(14):2756–61.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Finn RS, Jiang Y, Rugo H, Moulder SL, Im S, Gelmon KA, et al. Biomarker analyses from the phase 3 PALOMA-2 trial of palbociclib with letrozole compared with placebo plus letrozole in postmenopausal women with ER+/HER2− advanced breast cancer. Ann Oncol. 2016;27(7):1–36.Google Scholar
  50. 50.
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(8):1160–7.CrossRefGoogle Scholar
  51. 51.
    Dean JL, Thangavel C, McClendon AK, Reed CA, Knudsen ES. Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene. 2010;29(28):4018–32.CrossRefPubMedGoogle Scholar
  52. 52.
    Malorni L, Piazza S, Ciani Y, Guarducci C, Bonechi M, Biagioni C, et al. A gene expression signature of Retinoblastoma loss-of-function is a predictive biomarker of resistance to palbociclib in breast cancer cell lines and is prognostic in patients with ER positive early breast cancer. Oncotarget. 2016;7(42):68012–22.PubMedGoogle Scholar
  53. 53.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Asghar U, Herrera-Abreu MT, Cutts R, Babina I, Pearson A, Turner NC. Identification of subtypes of triple negative breast cancer (TNBC) that are sensitive to CDK4/6 inhibition. J Clin Oncol. 2015;33(suppl):Abstract 11098.Google Scholar
  55. 55.
    Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 2016;76(8):2301–13.CrossRefPubMedGoogle Scholar
  56. 56.
    Yang C, Li Z, Bhatt T, Dickler M, Giri D, Scaltriti M, et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene. 2016.Google Scholar
  57. 57.
    Wang P, Bahreini A, Gyanchandani R, Lucas PC, Hartmaier RJ, Watters RJ, et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin Cancer Res. 2016;22(5):1130–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, et al. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014;20(7):1757–67.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fribbens C, O’Leary B, Kilburn L, Hrebien S, Garcia-Murillas I, Beaney M, et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2016.Google Scholar
  60. 60.
    Franco J, Balaji U, Freinkman E, Witkiewicz AK, Knudsen ES. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep. 2016;14(5):979–90.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA

Personalised recommendations