Current Breast Cancer Reports

, Volume 6, Issue 3, pp 169–182 | Cite as

Therapeutic Considerations When Treating HER2-positive Metastatic Breast Cancer

Translational Research (V Stearns, Section Editor)

Abstract

Despite advances in detection and treatment, metastatic breast cancer (MBC) remains the second highest cause of cancer-related death for women in the United States. Human epidermal growth factor receptor-2 (HER2) is amplified in 25–30 % of breast cancers and is associated with aggressive disease and, historically, with poorer outcome. The advent of trastuzumab, a monoclonal antibody to HER2, revolutionized the management of HER2-positive breast cancer (BC) in the metastatic and adjuvant settings. However, relapse despite adjuvant trastuzumab and resistance to trastuzumab in the metastatic setting remain substantial clinical problems for many patients with HER2-positive BC. As such, analyzing the mechanisms of trastuzumab resistance and developing new therapies to overcome it are research priorities. There has been progress, with the approval of three additional HER2-targeted agents in the last six years: lapatinib, pertuzumab, and ado-trastuzumab emtansine (T-DM1). Other HER2-targeted therapies, including neratinib and afatinib, are in clinical development, and trials of novel agents such as heat shock protein-90 (HSP90) inhibitors, phosphatidylinositol-3-kinase (PI3K) inhibitors, and HER2-targeted vaccines, are in progress. In addition to developing new therapies, research is addressing several unique challenges in the management of HER2-positive MBC. In this article, we discuss advances in the treatment of HER2-positive MBC, focusing on novel HER2-targeted therapies and HER2-targeted agents recently approved by the United States Food and Drug Administration (FDA). We also address the management of brain metastases (BM) and hormone receptor (HR)-positive, HER2-positive MBC.

Keywords

Trastuzumab Metastatic breast cancer Lapatinib Pertuzumab Ado-trastuzumab emtansine Brain metastases Human epidermal growth factor receptor-2 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. Cancer J Clin. 2014;64(1):9–29.CrossRefGoogle Scholar
  2. 2.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.PubMedCrossRefGoogle Scholar
  3. 3.•
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013. 2013 updated guidelines for HER2 testing in breast cancer.PubMedCrossRefGoogle Scholar
  4. 4.
    Gonzalez-Angulo AM, Litton JK, Broglio KR, Meric-Bernstam F, Rakkhit R, Cardoso F, et al. High risk of recurrence for patients with breast cancer who have human epidermal growth factor receptor 2-positive, node-negative tumors 1 cm or smaller. J Clin Oncol. 2009;27(34):5700–6.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Andrulis IL, Bull SB, Blackstein ME, Sutherland D, Mak C, Sidlofsky S, et al. neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol. 1998;16(4):1340–9.PubMedGoogle Scholar
  6. 6.
    Chia S, Norris B, Speers C, Cheang M, Gilks B, Gown AM, et al. Human epidermal growth factor receptor 2 overexpression as a prognostic factor in a large tissue microarray series of node-negative breast cancers. J Clin Oncol. 2008;26:5697–704.PubMedCrossRefGoogle Scholar
  7. 7.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Garrett JT, Arteaga CL. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications. Cancer Biol Ther. 2011;11(9):793–800.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wilken JA, Maihle NJ. Primary trastuzumab resistance: new tricks for an old drug. Ann N Y Acad Sci. 2010;1210:53–65.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Stern HM. Improving treatment of HER2-positive cancers: opportunities and challenges. Sci Transl Med. 2012;4((127):127rv2.Google Scholar
  13. 13.
    von Minckwitz G, Schwedler K, Schmidt M, Barinoff J, Mundhenke C, Cufer T, et al. Trastuzumab beyond progression: overall survival analysis of the GBG 26/BIG 3-05 phase III study in HER2-positive breast cancer. Eur J Cancer. 2011;47(15):2273–81.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Eribulin with trastuzumab as first-line therapy for locally recurrent or metastatic her2 positive breast cancer; NCT01269346. Available at: www.clinicaltrials.gov.
  16. 16.
    VinCaT: Vinorelbine, carboplatin and trastuzumab in advanced HER2 positive breast cancer; NCT00431704. Available at: www.clinicaltrials.gov.
  17. 17.
    A randomized study of TH versus THL in first line treatment of HER2-positive metastatic breast cancer (TH vs THL); NCT01526369. Available at: www.clinicaltrials.gov.
  18. 18.
  19. 19.
    Lapatinib and RAD-001 for HER2 positive metastatic breast cancer; NCT01283789. Available at: www.clinicaltrials.gov.
  20. 20.
    Cabazitaxel plus lapatinib as therapy for HER2-positive metastatic breast cancer patients with intracranial metastases; NCT01934894. Available at: www.clinicaltrials.gov.
  21. 21.
    The Myocet/Lapatinib study. ICORG 10-03, V5; NCT01495884. Available at: www.clinicaltrials.gov.
  22. 22.
  23. 23.
    A study of pertuzumab in combination with trastuzumab plus an aromatase inhibitor in patients with hormone receptor-positive, metastatic HER2-positive breast cancer; NCT01491737. Available at: www.clinicaltrials.gov.
  24. 24.
    A study of pertuzumab in combination with herceptin (Trastuzumab) and a taxane in first-line treatment in patients with HER2-positive advanced breast cancer (PERUSE); NCT01572038. Available at: www.clinicaltrials.gov.
  25. 25.
    Phase II study of eribulin mesylate, trastuzumab, and pertuzumab in women with metastatic, unresectable locally advanced, or locally recurrent HER2-positive breast cancer; NCT01912963. Available at: www.clinicaltrials.gov.
  26. 26.
  27. 27.
    TDM1 with abraxane and lapatinib for metastatic HER2 positive breast cancer (STELA); NCT02073916. Available at: www.clinicaltrials.gov.
  28. 28.
    HER2 imaging study to identify HER2 positive metastatic breast cancer patients unlikely to benefit from T-DM1 (ZEPHIR); NCT01565200. Available at: www.clinicaltrials.gov.
  29. 29.
    HKI-272 for HER2-positive breast cancer and brain metastases; NCT01494662. Available at: www.clinicaltrials.gov.
  30. 30.
    A study of neratinib plus capecitabine versus lapatinib plus capecitabine in patients with HER2+ metastatic breast cancer who have received two or more prior HER2 directed regimens in the metastatic setting (NALA) NCT01808573. Available at: www.clinicaltrials.gov.
  31. 31.
    Lux-Breast 3; Afatinib alone or in combination with vinorelbine in patients with human epidermal growth factor receptor 2 (HER2) positive breast cancer suffering from brain metastases; NCT01441596. Available at: www.clinicaltrials.gov.
  32. 32.
    LUX-Breast 1: BIBW 2992 (Afatinib) in HER2-positive metastatic breast cancer patients after one prior herceptin treatment; NCT01125566. Available at: www.clinicaltrials.gov.
  33. 33.
    MM-111 in combination with herceptin in patients with advanced her2 amplified, heregulin positive breast cancer; NCT01097460. Available at: www.clinicaltrials.gov.
  34. 34.
    A study of MM-111 in combination with multiple treatments in patients with HER2 positive cancer; NCT01304784.Available at: www.clinicaltrials.gov.
  35. 35.
    Combination of AUY922 with trastuzumab in HER2+ advanced breast cancer patients previously treated with trastuzumab; NCT01271920. Available at: www.clinicaltrials.gov.
  36. 36.
    A study of everolimus, trastuzumab and vinorelbine In HER2-positive breast cancer brain metastases; NCT01305941. Available at: www.clinicaltrials.gov.
  37. 37.
    Everolimus in combination with trastuzumab and paclitaxel in the treatment of HER2 positive locally advanced or metastatic breast cancer (BOLERO-1); NCT00876395. Available at: www.clinicaltrials.gov.
  38. 38.
    A study of avastin (Bevacizumab) in combination with herceptin (Trastuzumab) and Xeloda (Capecitabine) in patients with HER2-positive breast cancer; NCT00811135. Available at: www.clinicaltrials.gov.
  39. 39.
    Combination immunotherapy with herceptin and the HER2 Vaccine NeuVax; NCT01570036. Available at: www.clinicaltrials.gov.
  40. 40.
    Trastuzumab, cyclophosphamide, and vaccine therapy in treating patients with high-risk or metastatic breast cancer; NCT00847171. Available at: www.clinicaltrials.gov.
  41. 41.
    Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Sarup JC, Johnson RM, King KL, Fendly BM, Lipari MT, Napier MA, et al. Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Regul. 1991;1(2):72–82.PubMedGoogle Scholar
  43. 43.
    Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16(10):5276–87.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Way TD, Lin JK. Role of HER2/HER3 co-receptor in breast carcinogenesis. Future Oncol. 2005;1(6):841–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol. 2005;23(19):4265–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Saini KS, Azim Jr HA, Metzger-Filho O, Loi S, Sotiriou C, de Azambuja E, et al. Beyond trastuzumab: new treatment options for HER2-positive breast cancer. Breast. 2011;20 Suppl 3:S20–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Chung A, Cui X, Audeh W, Giuliano A. Current status of anti-human epidermal growth factor receptor 2 therapies: predicting and overcoming herceptin resistance. Clin Breast Cancer. 2013;13(4):223–322013.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Spielmann M, Roche H, Delozier T, Canon JL, Romieu G, Borgeois H, et al. Trastuzumab for patients with axillary-node-positive breast cancer: results of the FNCLCC-PACS 04 trial. J Clin Oncol. 2009;27:6129–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Perez EA, Romond EH, Suman VJ, Jeong JH, Davidson NE, Geyer Jr CE, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29(25):3366–73.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Goldhirsch A, Gelber RD, Piccart-Gebhart MJ, de Azambuja E, Procter M, Suter TM, et al. 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet. 2013;382(9897):1021–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Joensuu H, Bono P, Kataja V, Alanko T, Kokko R, Asola R, et al. Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHer Trial. J Clin Oncol. 2009;27(34):5685–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Perez EA, Suman VJ, Davidson NE, Gralow JR, Kaufman PA, Visscher DW, et al. Sequential versus concurrent trastuzumab in adjuvant chemotherapy for breast cancer. J Clin Oncol. 2011;29(34):4491–7.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Pinto AC, Ades F, de Azambuja E, Piccart-Gebhart M. Trastuzumab for patients with HER2 positive breast cancer: delivery, duration and combination therapies. Breast. 2013;22 Suppl 2:S152–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8(5):459–65.PubMedCrossRefGoogle Scholar
  56. 56.
    Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.PubMedCrossRefGoogle Scholar
  57. 57.
    Guarneri V, Lenihan DJ, Valero V, Durand JB, Broglio K, Hess KR, et al. Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson Cancer Center experience. J Clin Oncol. 2006;24(25):4107–15.PubMedCrossRefGoogle Scholar
  58. 58.
    Pietras RJ, Pegram MD, Finn RS, Maneval DA, Slamon DJ. Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene. 1998;17(17):2235–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Pegram MD, Konecny GE, O'Callaghan C, Beryt M, Pietras R, Slamon DJ. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst. 2004;96(10):739–49.PubMedCrossRefGoogle Scholar
  60. 60.
    Burris 3rd HA. Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist. 2004;9 Suppl 3:10–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66(3):1630–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Burris 3rd HA, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O'Neil B, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 2005;23(23):5305–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, et al. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst. 2008;100(15):1092–103.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res. 2009;15(4):1452–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–432006.PubMedCrossRefGoogle Scholar
  66. 66.
    Cameron D, Casey M, Oliva C, Newstat B, Imwalle B, Geyer CE. Lapatinib plus capecitabine in women with HER2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist. 2010;15(9):924–34.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Burstein HJ, Storniolo AM, Franco S, Forster J, Stein S, Rubin S, et al. A phase II study of lapatinib monotherapy in chemotherapy-refractory HER2-positive and HER2-negative advanced or metastatic breast cancer. Ann Oncol. 2008;19(6):1068–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M, et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol. 2010;28(7):1124–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Blackwell KL, Burstein HJ, Storniolo AM, Rugo HS, Sledge G, Aktan G, et al. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study. J Clin Oncol. 2012;30(21):2585–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Sendur MA, Aksoy S, Altundag K. Cardiotoxicity of novel HER2-targeted therapies. Curr Med Res Opin. 2013;29(8):1015–24.PubMedCrossRefGoogle Scholar
  71. 71.
    Perez EA, Koehler M, Byrne J, Preston AJ, Rappold E, Ewer MS. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83(6):679–86.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhu S, Cawley SM, Bloch KD, Huang PL. Trastuzumab and lapatinib differ in effects on calcium cycling and HER2 expression in human embryonic stem-cell derived cardiomyocytes. http://www.hoajonline/pdf/2052-4358-1-10.PFD. doi:10.7243/2052-4358-1-10.
  73. 73.
    Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Barroso-Sousa R, Santana IA, Testa L, de Melo GD, Mano MS. Biological therapies in breast cancer: common toxicities and management strategies. Breast. 2013;22(6):1009–18.PubMedCrossRefGoogle Scholar
  75. 75.
    Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol. 2005;23(11):2534–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N, et al. Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother. 2006;55(6):717–27.PubMedCrossRefGoogle Scholar
  77. 77.
    Capelan M, Pugliano L, De Azambuja E, Bozovic I, Saini KS, Sotiriou C, et al. Pertuzumab: new hope for patients with HER2-positive breast cancer. Ann Oncol. 2013;24(2):273–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Cortes J, Fumoleau P, Bianchi GV, Petrella TM, Gelmon K, Pivot X, et al. Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2012;30(14):1594–600.PubMedCrossRefGoogle Scholar
  79. 79.
    Gordon MS, Matei D, Aghajanian C, Matulonis UA, Brewer M, Fleming GF, et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol. 2006;24(26):4324–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009;69(24):9330–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Baselga J, Swain SM. CLEOPATRA: a phase iii evaluation of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer. Clin Breast Cancer. 2010;10(6):489–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Baselga J, Gelmon KA, Verma S, Wardley A, Conte P, Miles D, et al. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. Clin Oncol. 2010;28(7):1138–44.CrossRefGoogle Scholar
  83. 83.•
    Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19. The pioneering trial which led to FDA approval of pertuzumab in combination with trastuzumab and docetaxel, as a standard of care for first-line treatment of metastatic HER2-positive breast cancer.PubMedCrossRefGoogle Scholar
  84. 84.
    Swain SM, Kim SB, Cortes J, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14(6):461–71.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Munoz-Mateu M, Urruticoechea A, Separovic R, Erfan J, Bachelot TD, Canon J, et al. Trastuzumab plus capecitabine with or without pertuzumab in patients with HER2-positive MBC whose disease has progressed during or following trastuzumab-based therapy for first-line metastatic disease: A multicenter, randomized, two-arm, phase II study (PHEREXA). ASCO Meeting Abstracts.2011 June 9, 2011; 29(15_suppl):TPS118.Google Scholar
  86. 86.
    Perez EA, Lopez-Vega JM, Mastro LD, Petit T, Zamagni C, Freudensprung U, et al. A combination of pertuzumab, trastuzumab, and vinorelbine for first-line treatment of patients with HER2-positive metastatic breast cancer: an open-label, two-cohort, phase II study (VELVET). 2012 ASCO Annual Meeting. J Clin Oncol 30, 2012 (suppl; abstrTPS653).Google Scholar
  87. 87.
    A study of trastuzumab-DM1 plus pertuzumab versus trastuzumab [Herceptin] plus a taxane in patients with metastatic breast cancer (MARIANNE); NCT01120184. Available at: www.clinicaltrials.gov.
  88. 88.
    Drucker AM, Wu S, Dang CT, Lacouture ME. Risk of rash with the anti-HER2 dimerization antibody pertuzumab: a meta-analysis. Breast Cancer Res Treat. 2012;135(2):347–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Ewer M, Baselga J, Clark E, Benyunes M, Ross G, Swain SM. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in the CLEOPATRA study. ASCO Meeting Abstracts. 2012;30(15_suppl):533.Google Scholar
  90. 90.
    Lenihan D, Suter T, Brammer M, Neate C, Ross G, Baselga J. Pooled analysis of cardiac safety in patients with cancer treated with pertuzumab. Ann Oncol. 2012;23(3):791–800.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Peddi PF, Hurvitz SA. Trastuzumab emtansine: the first targeted chemotherapy for treatment of breast cancer. Future Oncol. 2013;9(3):319–26.PubMedCrossRefGoogle Scholar
  92. 92.•
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91. Results from the EMILIA trial which led to the FDA approval of ado-trastuzumab emtansine.PubMedCrossRefGoogle Scholar
  93. 93.
    Wildiers H, Kim SB, Gonzalez-Martin A, LoRusso PM, Ferrero JM, Smitt M, Yu R, Leung A, Krop IE. T-DM1 for HER2-positive metastatic breast cancer (MBC). Primary results from TH3RESA, a phase 3 Study of T-DM1 vs treatment of physician's choice. Abstract no.15. Presented at: The European Cancer Congress, 27th September-1st October 2013, Amsterdan, the Netherlands.Google Scholar
  94. 94.
    Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004;64(11):3958–65.PubMedCrossRefGoogle Scholar
  95. 95.
    Wong KK, Fracasso PM, Bukowski RM, Lynch TJ, Munster PN, Shapiro GI, et al. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin Cancer Res. 2009;15(7):2552–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Burstein HJ, Sun Y, Dirix LY, Jiang Z, Paridaens R, Tan AR, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol. 2010;28(8):1301–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Saura C, Martin M, Moroose R, Harb W, Liem K, Arena F, et.al. Safety of neratinib (HKI-272) in combination with capacitabine in patients with solid tumors: a phase I/II Study. Presented at the thirty-second annual CTRC-AACR San Antonio Breast Cancer Symposium, Dec 10–13th 2009, San Antonio, TX. Cancer Res. Dec 15th, 2009; Vol 69, Issue 24, Suppl 3.Google Scholar
  98. 98.
    Temsirolimus plus neratinib for patients with metastatic HER2-amplified or triple negative breast cancer; NCT01111825. Available at: www.clinicaltrials.gov.
  99. 99.
    Study evaluating the combination of neratinib and capecitabine in solid tumors and breast cancer; NCT00741260. Available at: www.clinicaltrials.gov.
  100. 100.
    Geuna E, Montemurro F, Aglietta M, Valabrega G. Potential of afatinib in the treatment of patients with HER2-positive breast cancer. Breast Cancer (Dove Med Press). 2012;4:131–7.Google Scholar
  101. 101.
    Yap TA, Vidal L, Adam J, Stephens P, Spicer J, Shaw H, et al. Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J Clin Oncol. 2010;28(25):3965–72.PubMedCrossRefGoogle Scholar
  102. 102.
    Lin NU, Winer EP, Wheatley D, Carey LA, Houston S, Mendelson D, et al. A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res Treat. 2012;133(3):1057–65.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Harbeck N, Im SA, Huang CS et al. LUX-breast 1: Randomized, phase III trial of afatinib and vinorelbine versus trastuzumab and vinorelbine in patients with HER2-overexpressing metastatic breast cancer (MBC) failing one prior trastuzumab treatment.J Clin Oncol 30, 2012 (suppl; abstr TPS649).Google Scholar
  104. 104.
    Hickish T, Mehta A, Jain M, Huang CS, Kovalenko N, Udovitsa D, et al. LUX-Breast 2: Phase II, open-label study of oral afatinib in HER2-overexpressing metastatic breast cancer (MBC) patients (pts) who progressed on prior trastuzumab and/or lapatinib. Cancer Res. December 15, 2012; 72(24 Supplement): OT1-1-17.Google Scholar
  105. 105.
    LUX-Breast 3: Afatinib alone or in combination with vinorelbine in patients with human epidermal growth factor receptor 2 (HER2) Positive breast cancer suffering from brain metastases; NCT0112556. Available at: www.clinicaltrials.gov.
  106. 106.
    BIBW 2992 and letrozole in hormonoresistant metastatic breast cancer; NCT00708214. Available at: www.clinicaltrials.gov;
  107. 107.
    6 weeks treatment of locally advanced breast cancer With BIBW 2992 (Afatinib) or Lapatinib or Trastuzumab; NCT00826267. Available at: www.clinicaltrials.gov.
  108. 108.
    Phase I open label trial to assess safety of BIBW 2992 (Afatinib) in combination with herceptin® in patients with HER2-positive advanced breast cancer; NCT00950742. Available at:www.clinicaltrials.gov.
  109. 109.
    Muller D, Kontermann RE. Bispecific antibodies for cancer immunotherapy: current perspectives. BioDrugs. 2010;24(2):89–98.PubMedCrossRefGoogle Scholar
  110. 110.
    McDonagh CF, Huhalov A, Harms BD, Adams S, Paragas V, Oyama S, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther. 2012;11(3):582–93.PubMedCrossRefGoogle Scholar
  111. 111.
    Kirouac DC, Du JY, Lahdenranta J, Overland R, Yarar D, Paragas V, et al. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci Signal. 2013;6(288):ra68.PubMedGoogle Scholar
  112. 112.
    Higgins MJ, Gabrail NY, Miller K, Agresta SV, Sharma S, McDonagh C, et al. A phase I/II study of MM-111, a novel bispecific antibody that targets the ErB2/ErB3 heterodimer, in combination with trastuzumab in advanced refractory HER2-positive breast cancer. J Clin Oncol. 2011;29:(suppl; abstr TPS119).Google Scholar
  113. 113.
    Lauring J, Park BH, Wolff AC. The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer. J Natl Compr Canc Netw. 2013;11(6):670–8.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Baselga J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist. 2011;16 Suppl 1:12–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Study of XL147 (SAR245408) in combination with trastuzumab or paclitaxel and trastuzumab in subjects with metastatic breast cancer who have progressed on a previous trastuzumab-based regimen; NCT01042925. Available at: www.clinicaltrials.gov
  116. 116.
    Safety and efficacy of BKM120 in combination with trastuzumab in patients with relapsing HER2 overexpressing breast cancer who have previously failed trastuzumab; NCT01042925.Available at: www.clinicaltrials.gov.
  117. 117.
    Hurvitz SA, Andre F, Burris HA, Toi M, Buyse ME, Sahmoud T, et al. BOLERO-1: A randomized, phase III, double-blind, placebo-controlled multicenter trial of everolimus in combination with trastuzumab and paclitaxel as first-line therapy in women with HER2-positive (HER2+), locally advanced or metastatic breast cancer (BC).J Clin Oncol. 2012;30 (suppl; abstr TPS648).Google Scholar
  118. 118.
    O'Regan R, Ozguroglu M, Andre F, Toi M, Jerusalem GHM, Wilks S, et al. Phase III, randomized, double-blind, placebo-comtrolled multicenter trial of daily everolimus plus weekly trastuzumab and vinorelbine in trastuzumab-resistant, advanced breast cancer (BOLERO-3). J Clin Oncol 31,2013 (suppl; abstr 505).Google Scholar
  119. 119.
    Lu X, Xiao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol. 2012;83(8):995–1004.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Jhaveri K, Taldone T, Modi S, Chiosis G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta. 2012;1823(3):742–55.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R, et al. Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol. 2007;25(34):5410–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Jhaveri K, Miller K, Rosen L, Schneider B, Chap L, Hannah A, et al. A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin Cancer Res. 2012;18(18):5090–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Modi S, Saura C, Henderson C, Lin NU, Mahtani R, Goddard J, et al. A multicenter trial evaluating retaspimycin HCL (IPI-504) plus trastuzumab in patients with advanced or metastatic HER2-positive breast cancer. Breast Cancer Res Treat. 2013;139(1):107–13.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    An open-label multicenter phase 2 Window of opportunity study evaluating ganetespib in women with breast cancer (Enchant); NCT01677455. Available at: www.clinicaltrials.gov.
  125. 125.
    Modi S, Ismail-Khan R, Munster P, Lucas M, Galluppi GR, Tangri S, et al. Phase 1 dose escalation study of the heat shock protein 90 inhibitor BIIB021 with trastuzumab in HER2 metastatic breast cancer. Proceedings of the 33rd annual San Antonio breast cancer symposium (2010 Dec 8–12) San Antonio, TX.Google Scholar
  126. 126.
    Combination of AUY922 with trastuzumab in HER2+ advanced breast cancer in patients previously treated with trastuzumab; NCT01271920. Available at: www.clinicaltrials.gov.
  127. 127.
    Pegram MD, Reese DM. Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor. Semin Oncol. 2002;29(3 Suppl 11):29–37.PubMedCrossRefGoogle Scholar
  128. 128.
    Falchook GS, Moulder SL, Wheler JJ, Jiang Y, Bastida CC, Kurzrock R. Dual HER2 inhibition in combination with anti-VEGF treatment is active in heavily pretreated HER2-positive breast cancer. Ann Oncol. 2013;24(12):3004–11.PubMedCrossRefGoogle Scholar
  129. 129.
    Martin M, Makhson A, Gligorov J, Lichinitser M, Lluch A, Semiglazov V, et al. Phase II study of bevacizumab in combination with trastuzumab and capecitabine as first-line treatment for HER2-positive locally recurrent or metastatic breast cancer. Oncologist. 2012;17(4):469–75.PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Gianni L, Romieu GH, Lichinitser M, Serrano SV, Mansutti M, Pivot X, et al. AVEREL: a randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol. 2013;31(14):1719–25.PubMedCrossRefGoogle Scholar
  131. 131.
    Slamon DJ, Swain SM, Buyse M, Martin M, Geyer CE, Im Y-H, et al. Primary results from BETH, a phase III controlled study of adjuvant chemotherapy and trastuzumab+/- bevacizumab in patients with HER2-positive, node-positive, node-positive or high risk node-negative breast cancer. Presented at 36th CTRC-AACR San Antonio Breast Cancer Conference, Dec 9–14th 2013, San Antonio, TX.Google Scholar
  132. 132.
    Milani A, Sangiolo D, Montemurro F, Aglietta M, Valabrega G. Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. Ann Oncol. 2013;24(7):1740–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Disis M, Dang Y, Bates N, Higgins D, Childs J, Slota M, et al. Phase II study of a HER2/neu (HER2) intracellular domain (ICD) vaccine given concurrently with trastuzumab in patients with newly diagnosed advanced stage breast cancer. Cancer Res. 2010;69(24_suppl):5102.Google Scholar
  134. 134.
    Peoples GE, Holmes JP, Hueman MT, Mittendorf EA, Amin A, Khoo S, et al. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res. 2008;14(3):797–803.PubMedCrossRefGoogle Scholar
  135. 135.
    Benavides LC, Gates JD, Carmichael MG, Patil R, Holmes JP, Hueman MT, et al. The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res. 2009;15(8):2895–904.PubMedCrossRefGoogle Scholar
  136. 136.
    Emens LA, Gupta R, Petrik S, Laiko M, Leatherman JM, Levi J, et al. A feasibility study of combination therapy with trastuzumab (T), cyclophosphamide (CY), and an allogeneic GM-CSF-secreting breast tumor vaccine for the treatment of HER2+ metastatic breast cancer. Presented at: 2011 American Society of Clinical Oncology Annual Meeting. J Clin Oncol. 2011;29(suppl abstr 2535).Google Scholar
  137. 137.
    Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, et al. Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med. 2010;8:53.PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Cizkova M, Dujaric ME, Lehmann-Che J, Scott V, Tembo O, Asselain B, et al. Outcome impact of PIK3CA mutations in HER2-positive breast cancer patients treated with trastuzumab. Br J Cancer. 2013;108(9):1807–9.PubMedCentralPubMedCrossRefGoogle Scholar
  139. 139.•
    Baselga J, Cortes J, Im S-A, Clark E, Kiermaier A, Ross G, et al. Biomarker analysis in CLEOPATRA: A phase III, placebo controlled study of pertuzumab in HER2-positive, first line metastatic breast cancer (oral presentation). In: Proceedings of the 35th San Antonio Breast Cancer Symposium, San Antonio, Texas. December 4–8th 2012. Cancer Research: December 15, 2012; Volume 72, Issue 24, Supplement 3. Biomarker analysis from the pivotal CLEOPATRA trial.Google Scholar
  140. 140.
    Loibl S, Denkert C, Schneeweis A, Paepke S, Lehmann A, Rezai M, et al. PIK3CA mutation predicts resistance to anti-HER2/chemotherapy in primary HER2-positive/hormone-receptor-positive breast cancer – Prospective analysis of 737 participants of the GeparSixto and GeparQuinto studies. Presented at the 36th CTRC-AACR San Antonio Breast Cancer Symposium, December 9–14th 2013, San Antonio, TX.Google Scholar
  141. 141.
    Baselga J, Verma S, Ro J, Huober J, Guardino E, Fang L, et al. Abstract LB-63: Relationship between tumor biomarkers (BM) and efficacy in EMILIA, a phase III study of trastuzumab emtansine (T-DM1) in HER2-positive metastatic breast cancer (MBC). Cancer Res. April 15, 2013; 73(8 Supplement): LB-63Google Scholar
  142. 142.
    Lin NU. Brain metastases in HER2-positive breast cancer. Lancet Oncol. 2013;14(3):185–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Bria E, Cuppone F, Fornier M, Nistico C, Carlini P, Milella M, et al. Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: the dark side of the moon? A meta-analysis of the randomized trials. Breast Cancer Res Treat. 2008;109(2):231–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Bachelot T, Romieu G, Campone M, Dieras V, Cropet C, Dalenc F, et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 2013;14(1):64–71.PubMedCrossRefGoogle Scholar
  145. 145.
    Kunisue H, Kurebayashi J, Otsuki T, Tang CK, Kurosumi M, Yamamoto S, et al. Anti-HER2 antibody enhances the growth inhibitory effect of anti-oestrogen on breast cancer cells expressing both oestrogen receptors and HER2. Br J Cancer. 2000;82(1):46–51.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Kaufman B, Mackey JR, Clemens MR, Bapsy PP, Vaid A, Wardley A, et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol. 2009;27(33):5529–37.PubMedCrossRefGoogle Scholar
  147. 147.
    Johnston S, Pippen Jr J, Pivot X, Lichinitser M, Sadeghi S, Dieras V, et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol. 2009;27(33):5538–46.PubMedCrossRefGoogle Scholar
  148. 148.•
    Ramakrishna N, Temin S, Chandarlapaty S, Crews JR, Davidson NE, Esteva FJ, et al. Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American society of clinical oncology clinical practice guideline. J Clin Oncol. 2014 May 5. Recently published guidelines from the American Society of Clinical Oncology (ASCO) for the treatment of HER2-positive MBC. Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Medical Oncology BranchCenter for Cancer Research, National Cancer InstituteBethesdaUSA
  2. 2.The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreUSA
  3. 3.The Johns Hopkins Sidney Kimmel Cancer CenterSibley Memorial HospitalWashingtonUSA

Personalised recommendations