Current Breast Cancer Reports

, Volume 2, Issue 3, pp 146–151 | Cite as

Advances in Targeted Breast Cancer Therapy

  • Jallal ElHazzat
  • Mohamed E. H. El-sayedEmail author


Recent advances in drug design have led to the development of new small molecular weight chemotherapeutic agents, peptides, proteins, and nucleic acid molecules that can be used for treatment of breast cancer. However, transformation of these drug candidates into actual therapies with well-defined dosing regimens remains a significant challenge due to the limited ability to selectively deliver these drug molecules into the cytoplasm of breast cancer cells. In this article, we describe the use of liposomes, dendrimers, and polymeric micelles as carriers that can be used for delivery of anticancer drugs and their potential in breast cancer therapy. We also summarize the challenges facing the development of nucleic acid–based therapies.


Breast cancer Chemotherapy Nucleic acids Liposomes Dendrimers Micelles 



No potential conflicts of interest relevant to this article were reported.


  1. 1.
    Jemal A, Siegel R, Ward E, et al.: Cancer statistics Cancer J Clin 2009, 59:225–249.CrossRefGoogle Scholar
  2. 2.
    Takimoto CH, Calvo E: Principles of oncologic pharmacotherapy. In Cancer Management: A Multidisciplinary Approach, edn 11. Edited by Pazdur R, Wagman LD, Camphausen K. London: Cmp United Business Media; 2008:Chapter 3, 1–9.Google Scholar
  3. 3.
    Luo Y, Prestwich G: Cancer-targeted polymeric drugs. Curr Cancer Drug Targets 2002, 2:209–226.CrossRefPubMedGoogle Scholar
  4. 4.
    Igarashi E: Factors affecting toxicity and efficacy of polymeric nanomedicines. Toxicol Appl Pharmacol 2008, 229:121–134.CrossRefPubMedGoogle Scholar
  5. 5.
    Mahmud A, Xiong X, Aliabadi H, Lavasanifar A.: Polymeric micelles for drug targeting. J Drug Target 2007, 15:553–584.CrossRefPubMedGoogle Scholar
  6. 6.
    Torchilin VP: Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004, 61:2549–2559.CrossRefPubMedGoogle Scholar
  7. 7.
    Svenson S, Tomalia D: Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 2005, 57:2106–2129.CrossRefPubMedGoogle Scholar
  8. 8.
    Maeda H, Sawa T, Konno T: Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001, 74:47–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Yuan F, Dellian M, Fukumura D, et al.: Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995, 55:3752–3756.PubMedGoogle Scholar
  10. 10.
    Bangham A: A correlation between surface charge and coagulant action of phospholipids. Nature 1961, 192:1197–1198.CrossRefPubMedGoogle Scholar
  11. 11.
    Ning Y, He K, Dagher R, et al.: Liposomal doxorubicin in combination with bortezomib for relapsed or refractory multiple myeloma. Oncology (Williston Park) 2007, 21:1503–1508.Google Scholar
  12. 12.
    Mozafari M: Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 2005, 10:711–719.PubMedGoogle Scholar
  13. 13.
    Vemuri S, Rhodes C: Preparation and characterization of liposomes as therapeutic delivery systems. Pharm Acta Helv 1995, 70:95–111.CrossRefPubMedGoogle Scholar
  14. 14.
    Bawarski W, Chidlowsky E, Bharali D, Mousa S: Emerging nanopharmaceuticals. Nanomedicine 2008, 4:2732–2782.Google Scholar
  15. 15.
    Qiu L, Jing N, Jin Y: Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm 2008, 361:56–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Malam Y, Loizidou M, Seifalian A: Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009, 30:592–599.CrossRefPubMedGoogle Scholar
  17. 17.
    Hofheinz R, Gnad-Vogt S, Beyer U, Hochhaus A: Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005, 16:691–707.CrossRefPubMedGoogle Scholar
  18. 18.
    Markman M: Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother 2006, 7:1469–1474.CrossRefPubMedGoogle Scholar
  19. 19.
    Papahadjopoulos D, Allen T, Gabizon A, et al.: Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci 1991, 88:11460–11464.CrossRefPubMedGoogle Scholar
  20. 20.
    Klibanov A, Klibanov A, Maruyama K, et al.: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990, 268:235–237.CrossRefPubMedGoogle Scholar
  21. 21.
    Senior J, Delgado C, Booser D, et al.: Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1991, 1062:77–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Woodle M: Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids 1993, 64:249–262.CrossRefPubMedGoogle Scholar
  23. 23.
    Senior J: Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 1987, 3:123–193.PubMedGoogle Scholar
  24. 24.
    Torchilin V: Affinity liposomes in vivo: factors influencing target accumulation. J Mol Recognit 1996, 9:335–346.CrossRefPubMedGoogle Scholar
  25. 25.
    Ogawara K, Un K, Tanaka K, et al.: In vivo anti-tumor effect of PEG liposomal doxorubicin (DOX) in DOX-resistant tumor-bearing mice: involvement of cytotoxic effect on vascular endothelial cells. J Control Release 2009, 133:4–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Ogawara K, Un K, Minato K, et al.: Determinants for in vivo anti-tumor effects of PEG liposomal doxorubicin: importance of vascular permeability within tumors. Int J Pharm 2008, 359:234–240.CrossRefPubMedGoogle Scholar
  27. 27.
    Lyass O, Uziely B, Ben-Yosef R, et al.: Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer J Clin 2000, 89:1037–1047.Google Scholar
  28. 28.
    Burstein H, Ramirez M., Petros W, et al.: Phase I study of Doxil and vinorelbine in metastatic breast cancer. Ann Oncol 1999, 10:1113–1116.CrossRefPubMedGoogle Scholar
  29. 29.
    Rivera E, Valero V, Syrewicz L, et al.: Phase I study of stealth liposomal doxorubicin in combination with gemcitabine in the treatment of patients with metastatic breast cancer. J Clin Oncol 2001, 19:1716–1722.PubMedGoogle Scholar
  30. 30.
    Buhleier E, Wehner W, and Vogtle F: Cascade and nonskid-chain-like synthesis of molecular cavity topologies. Synthesis 1978, 55:155–158.CrossRefGoogle Scholar
  31. 31.
    Tomalia D, Baker H, Dewald JR, et al.: A new class of polymers: starburst-dendritic macromolecules. Polym J 1985, 17:117–132.CrossRefGoogle Scholar
  32. 32.
    Dufès C, Uchegbu I, and Schätzlein A: Dendrimers in gene delivery. Adv Drug Deliv Rev 2005, 57:2177–2202.CrossRefPubMedGoogle Scholar
  33. 33.
    Bosman A, Janssen H, and Meijer E: About dendrimers: structure, physical properties, and applications. Chem Rev 1999, 99:1665–1688.CrossRefPubMedGoogle Scholar
  34. 34.
    Tomalia D, Reyna L, and Svenson S: Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007, 35:61–67.CrossRefPubMedGoogle Scholar
  35. 35.
    Gillies E, and Fréchet J: Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005, 10:35–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Duncan R: Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs 1992, 3:175–210.CrossRefPubMedGoogle Scholar
  37. 37.
    Kojima CE, Kono K, Maruyama K, and Takagishi T.: Synthesis of polyamidoamine dendrimers havingpoly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 2000, 11:910–917.CrossRefPubMedGoogle Scholar
  38. 38.
    Haensler J, and Szoka F: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993, 4:372–379.CrossRefPubMedGoogle Scholar
  39. 39.
    Jansen JF, de Brabander-van den Berg EM, and Meijer EW.: Encapsulation of guest molecules into a dendritic box. Science 1994, 266:1226–1229.CrossRefPubMedGoogle Scholar
  40. 40.
    Craig J. Hawker, Karen L. Wooleyb, and Jean M. J. Frechet: Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc Perkin Trans 1993, 1:1287–1297.CrossRefGoogle Scholar
  41. 41.
    Bhadra D, Bhadra S, Jain S, Jain NK: A PEGylated dendritic nanoparticle carrier of fluorouracil. Int J Pharm 2003, 257 (1–2):111–124.CrossRefPubMedGoogle Scholar
  42. 42.
    Malik N, Evagorou EG, Duncan R: Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 1999, 10:767–776.CrossRefPubMedGoogle Scholar
  43. 43.
    Duncan R, and Malik N: Dendrimers: biocompatibility and potential for delivery of anticancer agents. Proc Int Symp Control Release Bioact Matter 1996, 23:105–106.Google Scholar
  44. 44.
    Choe YH, Conover CD, Wu D, et al.: Anticancer drug delivery systems: multi-loaded N4-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J. Control. Release 2002, 79:55–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Schiavon O, Pasut G, Moro S, et al.: PEG-Ara-C conjugates for controlled release. Eur J Med Chem 2004, 39:123–133.CrossRefPubMedGoogle Scholar
  46. 46.
    Kono K, Liu M, Fréchet JM, et al.: Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug Chem 1999, 10:1115–1121.CrossRefPubMedGoogle Scholar
  47. 47.
    Sudimack J, and Lee RJ: Targeted drug delivery via the folate receptor. Adv Drug Deliv 2000, 41:147–162.CrossRefGoogle Scholar
  48. 48.
    Quintana A, Raczka E, Piehler L, et al.: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002, 19:1310–1316.CrossRefPubMedGoogle Scholar
  49. 49.
    Kwon G, and Okano T: Soluble self-assembled block copolymers for drug delivery. Pharm Res 1999, 16:597–600.CrossRefPubMedGoogle Scholar
  50. 50.
    Torchilin V, and Trubetskoy V.: Biodistribution of surface-modified liposomes and particles In Microparticulate. Systems for the Delivery of Proteins and Vaccines. Edited by Cohen S, Bernstein H: Boca Raton, FL: CRC Press; 1996:243–277.Google Scholar
  51. 51.
    Inoue T, Chen G, Nakamae K, Hoffman A, et al.: An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J Control Release 1998, 51:221–229.CrossRefPubMedGoogle Scholar
  52. 52.
    Kuntz R, and Saltzman W: Polymeric controlled delivery for immunization. Trends Biotechnol 1997, 15:364–369.CrossRefPubMedGoogle Scholar
  53. 53.
    Cho K, Wang X, Nie S, et al.: Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008, 14:1310–1316.CrossRefPubMedGoogle Scholar
  54. 54.
    Kwon G, Naito M, Yokoyama M, et al.: Physical entrapment of adriamycin in AB block copolymer micelles. Pharm Res 1995, 12:192–195.CrossRefPubMedGoogle Scholar
  55. 55.
    Batrakova E, Dorodnych TY, Klinskii EY, et al.: Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 1996, 74:1545–1552.PubMedGoogle Scholar
  56. 56.
    Nakanishi T, Fukushima S, Okamoto K, et al.: Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001, 74:295–302.CrossRefPubMedGoogle Scholar
  57. 57.
    Nagasaki Y, Yasugi K, Yamamoto Y, et al.: Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2001, 2:1067–1070.CrossRefPubMedGoogle Scholar
  58. 58.
    Vinogradov S, Batrakova E, Li S, Kabanov A: Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjugate Chem 1999, 10:851–860.CrossRefGoogle Scholar
  59. 59.
    Leamon C, Weigl D, and Hendren R: Folate copolymer-mediated transfection of cultured cells. Bioconjugate Chem 1999, 10:947–957.CrossRefGoogle Scholar
  60. 60.
    Lee E, Na K, and Bae Y: Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 2003, 91:103–113.CrossRefPubMedGoogle Scholar
  61. 61.
    Gao Z, Lee D, Kim D, Bae Y.: Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J Drug Target 2005, 13:391–397.CrossRefPubMedGoogle Scholar
  62. 62.
    Urban-Klein B, Werth S, Abuharbeid S, et al.: RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005, 12:461–466CrossRefPubMedGoogle Scholar
  63. 63.
    Choudhury A, Charo J, Parapuram SK, et al.: Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer 2004, 108:71–77CrossRefPubMedGoogle Scholar
  64. 64.
    Whitehead K, Langer R, and Anderson D: Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009, 8:129–138CrossRefPubMedGoogle Scholar
  65. 65.
    Takeshita F, and Ochiya T: Therapeutic potential of RNA interference against cancer. Cancer Sci 2006, 97:689–696CrossRefPubMedGoogle Scholar
  66. 66.
    Storvold GL, Andersen TI, Perou CM, et al.: siRNA a potential tool for future breast cancer therapy. Crit Rev Oncogenesis 2006, 12:127–150PubMedGoogle Scholar
  67. 67.
    Akinc A, Thomas M, Klibanov A, Langer R, et al.: Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 2005, 7:657–663CrossRefPubMedGoogle Scholar
  68. 68.
    Sonawane N, Szoka FC Jr, Verkman AS, et al.: Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003, 278:44826–44831CrossRefPubMedGoogle Scholar
  69. 69.
    Cho YW, Kim J, and Park K: Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol 2003, 55:721–734CrossRefPubMedGoogle Scholar
  70. 70.
    Berg K, Selbo P, Prasmickaite L, et al.: Photochemical internalization: a novel technology or delivery of macromolecules into cytosol. Cancer Res 1999, 59:1180–1183PubMedGoogle Scholar
  71. 71.
    Menendez J, Vellon L, Colomer R, Lupu R: Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int J Cancer 2005, 115:19–35.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Cellular Engineering and Nano-Therapeutics LaboratoryUniversity of MichiganAnn ArborUSA
  2. 2.Macromolecular Science and Engineering ProgramUniversity of MichiganAnn ArborUSA
  3. 3.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations