Advertisement

Effects of 12 Weeks of Essential Amino Acids (Eaa)-Based Multi-Ingredient Nutritional Supplementation on Muscle Mass, Muscle Strength, Muscle Power and Fatigue in Healthy Elderly Subjects: A Randomized Controlled Double-Blind Study

  • M. Negro
  • S. Perna
  • D. Spadaccini
  • L. Castelli
  • L. Calanni
  • M. Barbero
  • C. Cescon
  • M. Rondanelli
  • Giuseppe D’AntonaEmail author
Article

Abstract

Objective

To counteract muscle mass, muscle strength and power loss during aging, and to study age-related change of neuromuscular manifestation of fatigue in relation to nutritional supplementation.

Design

randomized controlled double-blind study.

Setting

Twice-daily consumption for 12 weeks of an Essential Amino Acids (EAA)-based multi-ingredient nutritional supplement containing EAA, creatine, vitamin D and Muscle Restore Complex®.

Participants

38 healthy elderly subjects (8 male, 30 female; age: 68.91±4.60 years; body weight: 69.40±15.58 kg; height: 1.60±0.09 m) were randomized and allocated in supplement (SUPP) or placebo (PLA) group.

Mean Measurements

Vitamin D blood level; Appendicular Lean Mass (ALM); Visceral Adipose Tissue (VAT); Maximal Voluntary Contraction (MVC) and Peak Power (PP); myoelectric descriptors of fatigue: Fractal Dimension and Conduction Velocity initial values (FD iv, CV iv), their rates of change (FD slopes, CV slopes) and the Time to perform the Task (TtT).

Mean Results

Significant changes were found in SUPP compared to baseline: Vitamin D (+8.73 ng/ml; p<0.001); ALM (+0.34 kg; p<0.001); VAT (-76.25 g; p<0.001); MVC (+0.52 kg; p<0.001); PP (+4.82 W; p<0.001). Between group analysis (SUPP Vs. PLA) showed improvements: vitamin D blood levels (+11,72 ng/ml; p<0.001); Legs FFM (+443.7 g; p<0.05); ALM (+0.53 kg; p<0.05); MVC (+1.38 kg; p<0.05); PP (+9.87 W; p<0.05). No statistical changes were found for FD iv, CV iv, FD and CV slopes and TtT, either compared to baseline or between groups. Significant correlations between mean differences in SUPP group were also found.

Conclusion

The study demonstrates that in healthy elderly subjects an EAA-based multi-ingredient nutritional supplementation of 12 weeks is not effective to change myoelectric manifestation of fatigue and TtT failure but can positively affect muscle mass, muscle strength, muscle power and VAT, counterbalancing more than one year of age-related loss of muscle mass and strength.

Key words

Alpha lipoic acid coenzyme Q10 resveratrol sarcopenia muscle function 

References

  1. 1.
    Sirven, N.; Rapp, T.; Coretti, S.; Ruggeri, M.; Cicchetti, A. Preventing mobility disability in Europe: a health economics perspective from the SPRINTT study. Aging. Clin. Exp. Res. 2017, 29, 75–79, DOI: 10.1007/s40520-016-0713-4.Google Scholar
  2. 2.
    Vlietstra, L.; Hendrickx, W.; Waters, D.L. Exercise interventions in healthy older adults with sarcopenia: A systematic review and meta-analysis. Austral. J. Ageing. 2018, DOI: 10.1111/ajag.12521.Google Scholar
  3. 3.
    Rondanelli, M.; Faliva, M.; Monteferrario, F.; Peroni, G.; Repaci, E.; Allieri, F.; Perna, S. Novel insights on nutrient management of sarcopenia in elderly. Biomed. Res. Int. 2015, DOI: 10.1155/2015/524948.Google Scholar
  4. 4.
    Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistancetype exercise training: a meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464, DOI: 10.3945/ajcn.112.037556.Google Scholar
  5. 5.
    Devries, M.C.; Phillips, S.M. Creatine supplementation during resistance training in older adults: a meta-analysis. Med. Sci. Sports Exerc. 2014, 46, 1194–1203, DOI: 10.1249/MSS.0000000000000220.Google Scholar
  6. 6.
    Dhesi, J.K.; Jackson, S.H.; Bearne, L.M.; Moniz, C.; Hurley, M.V.; Swift, C.G.; Allain, T.J. Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing. 2004, 33, 589–595, DOI: 10.1093/ageing/afh209.Google Scholar
  7. 7.
    Gotshalk, L.A.; Volek, J.S.; Staron, R.S.; Denegar, C.R.; Hagerman, F.C.; Kraemer, W.J. Creatine supplementation improves muscular performance in older men. Med. Sci. Sports Exerc. 2002, 34, 537–543.Google Scholar
  8. 8.
    Pennings, B.; Boirie, Y.; Senden, J.M.G.; Gijsen, A.P.; Kuipers, H.; van Loon, L.J. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 2011, 93, 997–1005, DOI: 10.3945/ajcn.110.008102.Google Scholar
  9. 9.
    Bermon, S.; Venembre, P.; Sachet, C.; Valour, S.; Dolisi, C. Effects of creatine monohydrate ingestion in sedentary and weight-trained older adults. Acta Physiol. Scand. 1998, 164, 147–155, DOI: 10.1046/j.1365-201X.1998.00427.x.Google Scholar
  10. 10.
    Zhu, K.; Kerr, D.A.; Meng, X.; Devine, A.; Solah, V.; Binns, C.W., Prince, R.L. Two-Year Whey Protein Supplementation Did Not Enhance Muscle Mass and Physical Function in Well-Nourished Healthy Older Postmenopausal Women. J. Nutr. 2015, 145, 2520–2526, DOI: 10.3945/jn.115.218297.Google Scholar
  11. 11.
    Bell, K.E.; Snijders, T.; Zulyniak, M.; Kumbhare, D.; Parise, G.; Chabowski, A.; Phillips, S.M. A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial. PLoS One. 2017, 12, e0181387, DOI: 10.1371/journal.pone.0181387.Google Scholar
  12. 12.
    Bonnefoy, M.; Cornu, C.; Normand, S.; Boutitie, F.; Bugnard, F.; Rahmani, A.; Lacour, J.R.; Laville, M. The effects of exercise and protein-energy supplements on body composition and muscle function in frail elderly individuals: a longterm controlled randomised study. Br. J. Nutr. 2003, 89, 731–739, DOI: 10.1079/BJN2003836.Google Scholar
  13. 13.
    Fiatarone, M.A.; O’Neill, E.F.; Ryan, N.D.; Clements, K.M.; Solares, G.R.; Nelson, M.E.; Roberts, S.B.; Kehayias, J.J.; Lipsitz, L.A.; Evans, W.J. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 1994, 330, 1769–1775, DOI: 10.1056/NEJM199406233302501.Google Scholar
  14. 14.
    Fiatarone, M.A.; O’Neill, E.F.; Doyle, N.; Clements, K.M.; Roberts, S.B.; Kehayias, J.J.; Lipsitz, L.A.; Evans, W.J. The Boston FICSIT study: the effects of resistance training and nutritional supplementation on physical frailty in the oldest old. J. Am. Geriatr. Soc. 1993, 41, 333–337.Google Scholar
  15. 15.
    Miller, M.D.; Crotty, M.; Whitehead, C.; Bannerman, E.; Daniels, L.A. Nutritional supplementation and resistance training in nutritionally at risk older adults following lower limb fracture: a randomized controlled trial. Clin. Rehabil. 2006, 20, 311–323, DOI: 10.1191/0269215506cr942oa.Google Scholar
  16. 16.
    Sugawara, K.; Takahashi, H.; Kashiwagura, T.; Yamada, K.; Yanagida, S.; Homma, M.; Dairiki, K.; Sasaki, H.; Kawagoshi, A.; Satake, M.; et al. Effect of antiinflammatory supplementation with whey peptide and exercise therapy in patients with COPD. Respir. Med. 2012, 106, 1526–1534, DOI: 10.1016/j.rmed.2012.07.001.Google Scholar
  17. 17.
    Bunout, D.; Barrera, G.; de la Maza, P.; Avendaño, M.; Gattas, V.; Petermann, M.; Hirsch, S. The impact of nutritional supplementation and resistance training on the health functioning of free-living Chilean elders: results of 18 months of follow-up. J. Nutr. 2001, 131, 2441S–2446S, DOI: 10.1093/jn/131.9.2441S.Google Scholar
  18. 18.
    Bunout, D.; Barrera, G.; de la Maza, P.; Avendaño, M.; Gattas, V.; Petermann, M.; Hirsch, S. Effects of nutritional supplementation and resistance training on muscle strength in free living elders. Results of one year follow. J. Nutr. Health Aging. 2004, 8, 68–75.Google Scholar
  19. 19.
    de Jong, N.; Chin, A.; Paw, M.J.; de Groot, L.C.; Hiddink, G.J.; van Staveren, W.A. Dietary supplements and physical exercise affecting bone and body composition in frail elderly persons. Am. J. Public Health. 2000, 90, 947–954.Google Scholar
  20. 20.
    Rondanelli, M.; Klersy, C.; Terracol, G.; Talluri, J.; Maugeri, R.; Guido, D.; Faliva, M.A.; Solerte, B.S.; Fioravanti, M.; Lukaski, H.; et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am. J. Clin. Nutr. 2016, 103, 830–840, DOI: 10.3945/ajcn.115.113357.Google Scholar
  21. 21.
    Verreijen, A.M.; Verlaan, S.; Engberink, M.F.; Swinkels, S.; de Vogel-van den Bosch, J.; Weijs, P.J. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a doubleblind randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 279–286, DOI: 10.3945/ajcn.114.090290.Google Scholar
  22. 22.
    Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.; Mets, T.; Seal, C.; Wijers, S.L.; Ceda, G.P.; De Vito, G.; Donders, G.; et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747, DOI: 10.1016/j.jamda.2015.05.021.Google Scholar
  23. 23.
    Bo, Y.; Liu, C.; Ji, Z.; Yang, R.; An, Q.; Zhang, X.; You, J.; Duan, D.; Sun, Y.; Zhu, Y.; et al. A high whey protein, vitamin D and e supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: A double-blind randomized controlled trial. Clin. Nutr. 2018. pii: S0261-5614(18)30007-4. doi: 10.1016/j. clnu.2017.12.020.Google Scholar
  24. 24.
    Chanet, A.; Verlaan, S.; Salles, J.; Giraudet, C.; Patrac, V.; Pidou, V.; Pouyet, C.; Hafnaoui, N.; Blot, A.; Cano, N.; et al. Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink enhances postprandial muscle protein synthesis and muscle mass in healthy older men. J. Nutr. 2017, 147, 2262–2271.Google Scholar
  25. 25.
    D’Antona, G.; Nisoli, E. mTOR signaling as a target of amino acid treatment of the age-related sarcopenia. Interdiscip. Top. Gerontol. 2010, 37, 115–141, DOI: 10.1159/000319998.Google Scholar
  26. 26.
    Dillon, E.L. Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids. 2013, 45, 431–441, DOI: 10.1007/s00726-012-1438-0.Google Scholar
  27. 27.
    Xu, Z.R.; Tan, Z.J.; Zhang, Q.; Gui, Q.F.; Yang, Y.M. Clinical effectiveness of protein and amino acid supplementation on building muscle mass in elderly people: a metaanalysis. PLoS One 2014, 9, e109141, DOI: 10.1371/journal.pone.0109141.Google Scholar
  28. 28.
    Moon, A.; Heywood, L.; Rutherford, S.; Cobbold, C. Creatine supplementation: can it improve quality of life in the elderly without associated resistance training? Curr. Aging Sci. 2013, 6, 251–7.Google Scholar
  29. 29.
    Gotshalk, L.A.; Kraemer, W.J.; Mendonca, M.A.; Vingren, J.L.; Kenny, A.M.; Spiering, B.A.; Hatfield, D.L.; Fragala, M.S.; Volek, J.S. Creatine supplementation improves muscular performance in older women. Eur. J. Appl. Physiol. 2008, 102, 223–231, DOI: 10.1007/s00421-007-0580-y.Google Scholar
  30. 30.
    Dawson-Hughes, B. Serum 25-hydroxyvitamin D and muscle atrophy in the elderly. Proc. Nutr. Soc. 2012, 71, 46–49, DOI: 10.1017/S0029665111003260.Google Scholar
  31. 31.
    Weaver, C.M.; Alexander, D.D.; Boushey, C.J.; Dawson-Hughes, B.; Lappe, J.M.; LeBoff, M.S.; Liu, S.; Looker, A.C.; Wallace, T.C.; Wang, D.D. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos. Int. 2016, 27, 367–76, DOI: 10.1007/s00198-015-3386-5.Google Scholar
  32. 32.
    Shay, K.P.; Moreau, R.F.; Smith, E.J.; Smith, A.R.; Hagen, T.M. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta. 2009, 1790, 1149–1160, DOI: 10.1016/j.bbagen.2009.07.026.Google Scholar
  33. 33.
    Goraca, A.; Huk-Kolega, H.; Piechota, A.; Kleniewska, P.; Ciejka, E.; Skibska B. Lipoic acid–biological activity and therapeutic potential. Pharm. Reports. 2011, 63, 849–858.Google Scholar
  34. 34.
    Fischer, A.; Onur, S.; Niklowitz, P.; Menke, T.; Laudes, M.; Rimbach, G.; Döring, F. Coenzyme Q10 Status as a Determinant of Muscular Strength in Two Independent Cohorts. PLoS One 2016, 11, e0167124, DOI: 10.1371/journal.pone.0167124.Google Scholar
  35. 35.
    Bennett, B.T.; Mohamed, J.S.; Alway, S.E. Effects of Resveratrol on the Recovery of Muscle Mass Following Disuse in the Plantaris Muscle of Aged Rats. PLoS One 2013, 8, e83518, DOI: 10.1371/journal.pone.0083518.Google Scholar
  36. 36.
    Jackson, J.R.; Ryan, M.J.; Alway, S.E. Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice. J. Gerontol. A. Biol. Sci. Med. Sci. 2011, 66, 751–764, DOI: 10.1093/gerona/glr047.Google Scholar
  37. 37.
    Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROTAGE Study Group. J. Am. Med. Direct. Ass. 2013, 14, 542–559, DOI: 10.1016/j. jamda.2013.05.021.Google Scholar
  38. 38.
    Janssen, I.; Baumgartner, R.N.; Ross, R.; Rosenberg, I.H.; Roubenoff, R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am. J. Epidemiol. 2004, 159, 413–421.Google Scholar
  39. 39.
    Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T., Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis Report of the European Working Group on Sarcopenia in Older People. Age and Aging 2010, 39, 412–423, DOI: 10.1093/ageing/ afq034.Google Scholar
  40. 40.
    Reinhardt, M.; Piaggi, P.; DeMers, B.; Trinidad, C.; Krakoff, J. Cross calibration of two dual-energy X-ray densitometers and comparison of visceral adipose tissue measurements by iDXA and MRI. Obesity 2017, 25, 332–337, DOI: 10.1002/ oby.21722.Google Scholar
  41. 41.
    Merletti, R.; Roy, S. Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions. J. Orthop. Sports Phys. Ther. 1996, 24, 342–353. DOI: 10.2519/jospt.1996.24.6.342.Google Scholar
  42. 42.
    Negro, M.; Segreto, V.; Barbero, M.; Cescon, C.; Castelli, L.; Calanni, L.; D’Antona, G. Essential Amino Acids (EAA) Mixture Supplementation: Effects of an Acute Administration Protocol on Myoelectric Manifestations of Fatigue in the Biceps Brachii After Resistance Exercise. Front Physiol. 2018, 9, 1140. DOI: 10.3389/ fphys.2018.01140.Google Scholar
  43. 43.
    Fitzmaurice, G.M.; Laird, N.M.; Ware, J.H. Applied longitudinal analysis. Wiley-Interscience, Hoboken, NJ, 2004.Google Scholar
  44. 44.
    Adamo, M.L.; Farrar, R.P. Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process. Ageing Res. Rev. 2006, 5, 310–331, DOI: 10.1016/j.arr.2006.05.001.Google Scholar
  45. 45.
    Beaudart, C.; Dawson, A.; Shaw, S.C.; Harvey, N.C.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; Bruyère, O.; et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 2017, 28, 1817–1833, DOI 10.1007/s00198-017-3980-9.Google Scholar
  46. 46.
    Roberts, B.M.; Lavin, K.M.; Many, G.M.; Thalacker-Mercer, A.; Merritt, E.K.; Bickel, C.S.; Mayhew, D.L.; Tuggle, S.C.; Cross, J.M.; Kosek DJ; et al. Human neuromuscular aging: Sex differences revealed at the myocellular level. Exp Gerontol. 2018, 106, 116–124. DOI: 10.1016/j.exger.2018.02.023.Google Scholar
  47. 47.
    Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.Y.; Bruyère, O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345, DOI: 10.1210/jc.2014-1742.Google Scholar
  48. 48.
    Bischoff-Ferrari, H.A. Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Adv. Exp. Med. Biol. 2014, 810, 500–525.Google Scholar
  49. 49.
    Gualano, B.; Rawson, E.S.; Candow, D.G.; Chilibeck, P.D. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids 2016, 48, 1793–1805, DOI: 10.1007/s00726-016-2239-7.Google Scholar
  50. 50.
    Arivazhagan, P.; Ramanathan, K.; Panneerselvam, C. Effect of DL-Alpha-lipoic acid on mitochondrial enzymes in aged rats. Chem. Biol. Interact. 2001, 138, 189–198.Google Scholar
  51. 51.
    Arivazhagan, P.; Ramanathan, K.; Panneerselvam, C. Effect of DL-Alpha-lipoic acid on the status of lipid peroxidation and lipids in aged rats. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, B788–B791.Google Scholar
  52. 52.
    Fischer, A.; Onur, S.; Niklowitz, P., Menke, T.; Laudes, M.; Rimbach, G.; Döring, F. Coenzyme Q10 Status as a Determinant of Muscular Strength in Two Independent Cohorts. PLoS One 2016, 1, e0167124, DOI:10.1371/journal.pone.0167124.Google Scholar
  53. 53.
    González-Guardia, L.; Yubero-Serrano, E.M.; Delgado-Lista, J.; Perez-Martinez, P.; Garcia-Rios, A.; Marin, C.; Camargo, A.; Delgado-Casado, N.; Roche, H.M.; Perez-Jimenez, F.; et al. Effects of the Mediterranean Diet Supplemented With Coenzyme Q10 on Metabolomic Profiles in Elderly Men and Women. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 78–84, DOI:10.1093/gerona/glu098.Google Scholar
  54. 54.
    Yubero-Serrano, E.M.; Gonzalez-Guardia, L.; Rangel-Zuñiga, O.; Delgado-Lista, J.; Gutierrez-Mariscal, F.M.; Perez-Martinez, P.; Delgado-Casado, N., Cruz-Teno, C., Tinahones, F.J.; Villalba, J.M.; et al. Mediterranean Diet Supplemented With Coenzyme Q10 Modifies the Expression of Proinflammatory and Endoplasmic Reticulum Stress–Related Genes in Elderly Men and Women. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 3–10, DOI:10.1093/gerona/glr167.Google Scholar
  55. 55.
    Sola, S.; Mir, M.Q.; Cheema, F.A.; Khan-Merchant, N.; Menon, R.G.; Parthasarathy, S.; Khan, B.V. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation 2005, 111, 343–348, DOI: 10.1161/01.CIR.0000153272.48711.B9.Google Scholar
  56. 56.
    Rodriguez, M.C.; MacDonald, J.R.; Mahoney, D.J.; Parise, G.; Beal, M.F.; Tarnopolsky, M.A. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 2007, 35, 235–242, DOI: 10.1002/mus.20688.Google Scholar
  57. 57.
    Jackson, J.R.; Ryan, M.J.; Alway, S.E. Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 751–764, DOI: 10.1093/gerona/glr047.Google Scholar
  58. 58.
    Wang, D.T.; Yin, Y.; Yang, Y.J.; Lv, P.J.; Shi, Y.; Lu, L.; Wei, L.B. Resveratrol prevents TNF-a-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12 myotubes. Int. Immunopharmacol. 2014, 19, 206–213, DOI: 10.1016/j.intimp.2014.02.002.Google Scholar
  59. 59.
    Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342, DOI: 10.1038/ nature05354.Google Scholar
  60. 60.
    Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122, DOI: 10.1016/j.cell.2006.11.013.Google Scholar
  61. 61.
    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.; Kersten, S.; et al. Calorie restrictionlike effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell. Metab. 2011, 14, 612–622, DOI: 10.1016/j. cmet.2011.10.002.Google Scholar
  62. 62.
    Most, J.; Timmers, S.; Warnke, I.; Jocken, J.W.; van Boekschoten, M.; de Groot, P.; Bendik, I.; Schrauwen, P.; Goossens, G.H.; Blaak, E.E. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 215–227, DOI: 10.3945/ajcn.115.122937.Google Scholar
  63. 63.
    Tchernof, A.; Despres, J.P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 2013, 93, 359–404, DOI: 10.1152/physrev.00033.2011.Google Scholar
  64. 64.
    Schweitzer L, Geisler C, Johannsen M, Glüer CC, Müller MJ. Associations between body composition, physical capabilities and pulmonary function in healthy older adults. Eur. J. Clin. Nutr. 2017, 71, 389–394, DOI: 10.1038/ejcn.2016.146Google Scholar
  65. 65.
    Reule, C.A.; Scholz, C.; Schoen, C.; Brown, N.; Siepelmeyer, A.; Alt, W.W. Reduced muscular fatigue after a 12-week leucine-rich amino acid supplementation combined with moderate training in elderly: a randomised, placebo-controlled, double-blind trial. BMJ Open Sport Exerc Med. 2017, 2, e000156. DOI: 10.1136/bmjsem-2016-000156.Google Scholar
  66. 66.
    Gryson, C.; Ratel, S.; Rance, M.; Penando, S.; Bonhomme, C.; Le Ruyet, P.; Duclos, M.; Boirie, Y.; Walrand S. Four-month course of soluble milk proteins interacts with exercise to improve muscle strength and delay fatigue in elderly participants. J Am Med Dir Assoc. 2014, 15, 958.e1-9. DOI: 10.1016/j.jamda.2014.09.011.Google Scholar
  67. 67.
    Merletti, R.; Farina, D.; Gazzoni, M.; Schieroni, M.P. Effect of age on muscle functions investigated with surface electromyography. Muscle Nerve 2002; 25, 65–76.Google Scholar
  68. 68.
    Kupa, E.J.; Roy, S.H.; Kandarian, S.C.; De Luca, C.J. Effects of muscle fiber type and size on EMG median frequency and conduction velocity. J Appl Physiol 1995; 79, 23–32.Google Scholar
  69. 69.
    Boccia, G.; Dardanello, D.; Rosso, V.; Pizzigalli, L.; Rainoldi A. The Application of sEMG in Aging: A Mini Review. Gerontology. 2015, 61,477–84. DOI: 10.1159/000368655.Google Scholar
  70. 70.
    Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The Health, Aging and Body Composition Study. J. Gerontol. A Biol. Sci. Med. Sci. 2006; 61, 1059–1064.Google Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • M. Negro
    • 1
  • S. Perna
    • 2
  • D. Spadaccini
    • 3
  • L. Castelli
    • 1
  • L. Calanni
    • 1
  • M. Barbero
    • 4
  • C. Cescon
    • 4
  • M. Rondanelli
    • 3
    • 5
  • Giuseppe D’Antona
    • 1
    • 6
    Email author
  1. 1.CRIAMS-Sport Medicine CentreUniversity of PaviaVogheraItaly
  2. 2.Department of Biology, College of ScienceUniversity of BahrainSakhir CampusKingdom of Bahrain
  3. 3.Department of Public Health, Experimental and Forensic MedicineSchool of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di PaviaPaviaItaly
  4. 4.Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social CareUniversity of Applied Sciences and Arts of Southern SwitzerlandMannoSwitzerland
  5. 5.IRCCS Mondino FoundationPaviaItaly
  6. 6.Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly

Personalised recommendations