Motoric Cognitive Risk Syndrome: Prevalence and Risk of Cognitive Impairment in a Population Studied in the Mexican Health and Aging Study 2012-2015

  • Sara G. Aguilar-NavarroEmail author
  • A. J. Mimenza-Alvarado
  • J. E. Aguilar-Esquivel
  • S. G. Yeverino-Castro
  • T. Juárez-Cedillo
  • S. Mejía-Arango



The aim of this study was to determine the prevalence of Motoric Cognitive Risk (MCR) syndrome, describe associated risk factors and to determine the risk of progression to cognitive impairment after three years of follow-up, in a sample of Mexican older adults.


A prospective panel study of health and aging in Mexico.

Setting and participants

Baseline and follow-up information was obtained from the Mexican Health and Aging Study’s 2012 and 2015 waves. A total of 726 subjects aged 60 years or older with normal cognition at baseline were classified into 4 groups: 1) with MCR, 2) with memory complaint only, 3) with slow gait speed only and, 4) without MCR. Cox regression analysis controlling for confounder factors was performed to determine the risk of progression to cognitive impairment in the MCR group.


Data such as gait speed, functional status and cognitive performance (standardized by age and sex in Mexican population) was collected.


MCR prevalence was 14.3%. When compared with non-MCR subjects, the presence of MCR was associated with older age (p<0.01), lower educational status (p=0.05), having two or more comorbidities (p<0.05) and diabetes mellitus diagnosis (p<0.05). At follow-up and after adjusting for confounders, MCR was associated with a 2.4-fold increased risk (95% CI: 1.28-4.26, p=.000) of cognitive impairment.


MCR syndrome increases the risk of cognitive impairment in Mexican older adults. Simple measurements such as gait evaluation in subjects with memory complaints could allow early identification of those at risk of developing cognitive impairment.

Key words

Cognitive complaints slow gait activities of daily living cognitive impairment older adult 


  1. 1.
    Instituto Nacional de Estadística, Geografía e Informática. Estadísticas a propósito del día internacional de las personas de la tercera edad. INEGI. Accessed 11 September 2017
  2. 2.
    Organización Panamericana de la Salud. Encuesta Multicéntrica, Salud Bienestar y Envejecimiento (SABE) en América Latina y el Caribe, 2001. Accessed 11 September 2017
  3. 3.
    Mejía S, Miguel-Jaimes A, Villa A, Ruiz L, Gutiérrez LM. Cognitive impairment and associated factors in older adults in Mexico. Salúd Publica Mex 2007;49 suppl 4, 475-481Google Scholar
  4. 4.
    Solomon PR, Murphy CA. Should we screen for Alzheimer’s disease? A review of the evidence for and against screening Alzheimer’s disease in primary care practice. Geriatrics 2005;60:26–31Google Scholar
  5. 5.
    Prince M, Acosta D, Ferri CP, et al. Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve:a 10/66 Dementia Research Group population-based cohort study. Lancet 2005;7;380(9836):50-8Google Scholar
  6. 6.
    Bush C, Kozak J, Elmslie T. Screening for cognitive impairment in the elderly. Can Fam Physician 1997;43:1763–8Google Scholar
  7. 7.
    Doraiswamy PM, Steffens DC, Pitchumoni S, et al. Early recognition of Alzheimer’s disease:what is consensual? What is controversial? What is practical? J Clin Psychiatry 1998;59 Suppl 13:6–18Google Scholar
  8. 8.
    Verghese J, Wang C, Lipton RB, et al. Motoric cognitive risk syndrome and the risk of dementia. J Gerontol A Biol Sci Med Sci 2013;68:412–18CrossRefGoogle Scholar
  9. 9.
    Montero M, Bergman H, Phillips NA, et al. Dual-tasking and gait in people with mild cognitive impairment. The effect of working memory. BMC Geriatr 2009;9:41Google Scholar
  10. 10.
    Wong R, Espinoza M, Palloni A. Adultos mayores mexicanos en contexto socioeconómico amplio:salud y envejecimiento. Salud Pública Mex 2007;49:s436–s447.Google Scholar
  11. 11.
    Wong R, Michaels A, Palloni A. Cohort Profile:The Mexican Health and Aging Study (MHAS). Int J Epidemiol 2017;1;46(2):e2Google Scholar
  12. 12.
    Wolfe N, Imai Y, Otani C, et al. Criterion validity of the cross-cultural cognitive examination in Japan. J Gerontol 1992;47:289–91CrossRefGoogle Scholar
  13. 13.
    Mejía S, Wong R, Michaels A. Normative and standardized data for cognitive measures in the Mexican Health and Aging Study. Salud Pública Mex 2015;57:s90–s96CrossRefGoogle Scholar
  14. 14.
    Jorms AF, Scott R, Cullen JS, et al. Performance of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) as a screening test for dementia. Psychol Med 1991;21(3):785–90CrossRefGoogle Scholar
  15. 15.
    Pérez MU, Sánchez N, González M, et al. Sarcopenia prevalence using simple measurements and population-based cutoff values. J Lat Am Geriatr Med 2016;2(1):8–13Google Scholar
  16. 16.
    Lawton MP, Brody EM. Assessment of older people:self-maintaining and instrumental activities of daily living. The Gerontologist 1969;9:179–86CrossRefGoogle Scholar
  17. 17.
    Dorantes G, Ávila JA, Mejía S, et al. Factores asociados con la dependencia funcional en los adultos mayores:un análisis secundario del Estudio Nacional sobre Salud y Envejecimiento en México. Rev Panam Salud Pública 2001;22:1–11CrossRefGoogle Scholar
  18. 18.
    Aguilar SG, Fuente A, Ávila JA, et al. Validez y confiabilidad del cuestionario del ENASEM para la depresión en adultos mayores. Salud Pública Mex 2007;49:256–62CrossRefGoogle Scholar
  19. 19.
    Kumai K, Meguro K, Kasai M, et al. Neuroepidemiologic and Neurobehavioral Characteristics of Motoric Cognitive Risk Syndrome in an Old-Old Population:The Kurihara Project. Dement Geriatr Cogn Disord Extra 2016;6:176–82CrossRefGoogle Scholar
  20. 20.
    Verghese J, Annweiler C, Ayers E, et al. Motoric cognitive risk syndrome:multicountry prevalence and dementia risk. Neurology 2014;83:718–26CrossRefGoogle Scholar
  21. 21.
    Lord S, Galna B, Verghese J, et al. Independent domains of gait in older adults and associated motor and nonmotor attributes:validation of a factor analysis approach. J Gerontol A Biol Sci Med Sci Jul; 2013;68(7):820–7CrossRefGoogle Scholar
  22. 22.
    Callisaya ML, Blizzard L, McGinley JL, et al. Sensorimotor factors affecting gait variability in older people-a population-based study. J Gerontol A Biol Sci Med Sci Apr; 2010;65(4):386–92CrossRefGoogle Scholar
  23. 23.
    Verghese J, Noone ML, Johnson B, et al. Picture-based memory impairment screen for dementia. J Am Geriatr Soc Nov; 2012;60(11):2116–20CrossRefGoogle Scholar
  24. 24.
    Goldman R, Grossman M. Update on Apraxia. Curr Neurol Neurosci Rep 2008;8(6):490–96CrossRefGoogle Scholar
  25. 25.
    Sturman DA, Moghadamm B. The Neurobiology of Adolescence:Changes in brain architecture, functional dynamics, and behavioral tendencies. Neurosci Biobehav Rev 2011;35(8):1704–12CrossRefGoogle Scholar
  26. 26.
    Meyer JS, Barron DW. Apraxia of gait:A clinico-physiological study. Brain 1960;83(2):261–84CrossRefGoogle Scholar
  27. 27.
    Doi T, Verghese J, Shimada H, et al. Motoric Cognitive Risk Syndrome:Prevalence and Risk Factors in Japanese Seniors. J Am Med Dir Assoc 2015;16:1103.e21-25CrossRefGoogle Scholar
  28. 28.
    Gonzales JU, James CR, Yang HS, et al. Different cognitive functions discriminate gait performance in younger and older women:A pilot study. Gait Posture 2016;50:89–95CrossRefGoogle Scholar
  29. 29.
    Economou A, Papageorgiou S, Karageorgiou C. Working-delayed memory difference detects mild cognitive impairment without being affected by age and education. J Clin Exp Neuropsychol 2006;28:528–35CrossRefGoogle Scholar
  30. 30.
    Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc Jul; 2001;7(5):631–9CrossRefGoogle Scholar
  31. 31.
    Biessels GJ, Strachan MW, Visseren FL, et al. Dementia and cognitive decline in type 2 diabetes and prediabetic stages:towards targeted interventions. Lancet Diabetes Endocrinol 2014;2:246–e255CrossRefGoogle Scholar
  32. 32.
    Callisaya ML, Ayers E, Birzilai N, et al. Motoric Cognitive Risk Syndrome and Falls Risk:A Multi-Center Study. J Alzheimers Dis 2016;53(3):1043–52CrossRefGoogle Scholar
  33. 33.
    Hajjar I, Yang F, Sorond F, et al. A novel aging phenotype of slow gait, impaired executive function, and depressive symptoms:relationship to blood pressure and other cardiovascular risks. J Gerontol A Biol Sci Med Sci 2009;64(9):994–1001CrossRefGoogle Scholar
  34. 34.
    Lampinen P, Heikkinen E. Reduced mobility and physical activity as predictors of depressive symptoms among community-dwelling older adults:an eight-year followup study. Aging Clin Exp Res 2003;15(3):205–11CrossRefGoogle Scholar
  35. 35.
    Kueper JK, Speechley M, Lingum NR, et al. Motor function and incident dementia:a systematic review and meta-analysis. Age Ageing 2017;46:729–38CrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Sara G. Aguilar-Navarro
    • 1
    • 7
    Email author
  • A. J. Mimenza-Alvarado
    • 1
    • 2
  • J. E. Aguilar-Esquivel
    • 2
  • S. G. Yeverino-Castro
    • 2
  • T. Juárez-Cedillo
    • 3
    • 4
  • S. Mejía-Arango
    • 5
    • 6
  1. 1.Department of Geriatric MedicineInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
  2. 2.Geriatric Medicine & Neurology FellowshipInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
  3. 3.Epidemiologic and Health Service Research Unit, Aging Area, Mexican Institute of Social SecurityNational Medical Center Century XXIMexico CityMexico
  4. 4.Faculty of High Studies (FES) ZaragozaNational Autonomous University of MexicoMexico CityMexico
  5. 5.Department of Population StudiesEl Colegio de la Frontera NorteTijuana, Baja CaliforniaMéxico
  6. 6.Sealy Center on AgingUniversity of Texas Medical BranchGalvestonUSA
  7. 7.Department of GeriatricsInstituto Nacional de Ciencias, Médicas y Nutrición Salvador ZubiránTlalpan, Mexico CityMexico

Personalised recommendations