The journal of nutrition, health & aging

, Volume 22, Issue 10, pp 1148–1161 | Cite as

International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management

  • Elsa DentEmail author
  • J. E. Morley
  • A. J. Cruz-Jentoft
  • H. Arai
  • S. B. Kritchevsky
  • J. Guralnik
  • J. M. Bauer
  • M. Pahor
  • B. C. Clark
  • M. Cesari
  • J. Ruiz
  • C. C. Sieber
  • M. Aubertin-Leheudre
  • D. L. Waters
  • R. Visvanathan
  • F. Landi
  • D. T. Villareal
  • R. Fielding
  • C. W. Won
  • O. Theou
  • F. C. Martin
  • B. Dong
  • J. Woo
  • L. Flicker
  • L. Ferrucci
  • R. A. Merchant
  • L. Cao
  • T. Cederholm
  • S. M. L. Ribeiro
  • L. Rodríguez-Mañas
  • S. D. Anker
  • J. Lundy
  • L. M. Gutiérrez Robledo
  • I. Bautmans
  • I. Aprahamian
  • J. M. G. A. Schols
  • M. Izquierdo
  • B. Vellas



Sarcopenia, defined as an age-associated loss of skeletal muscle function and muscle mass, occurs in approximately 6 - 22 % of older adults. This paper presents evidence-based clinical practice guidelines for screening, diagnosis and management of sarcopenia from the task force of the International Conference on Sarcopenia and Frailty Research (ICSFR).


To develop the guidelines, we drew upon the best available evidence from two systematic reviews paired with consensus statements by international working groups on sarcopenia. Eight topics were selected for the recommendations: (i) defining sarcopenia; (ii) screening and diagnosis; (iii) physical activity prescription; (iv) protein supplementation; (v) vitamin D supplementation; (vi) anabolic hormone prescription; (vii) medications under development; and (viii) research. The ICSFR task force evaluated the evidence behind each topic including the quality of evidence, the benefitharm balance of treatment, patient preferences/values, and cost-effectiveness. Recommendations were graded as either strong or conditional (weak) as per the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Consensus was achieved via one face-to-face workshop and a modified Delphi process.


We make a conditional recommendation for the use of an internationally accepted measurement tool for the diagnosis of sarcopenia including the EWGSOP and FNIH definitions, and advocate for rapid screening using gait speed or the SARC-F. To treat sarcopenia, we strongly recommend the prescription of resistance-based physical activity, and conditionally recommend protein supplementation/a protein-rich diet. No recommendation is given for Vitamin D supplementation or for anabolic hormone prescription. There is a lack of robust evidence to assess the strength of other treatment options.

Key words

Sarcopenia/diagnosis sarcopenia/therapy muscle strength aged 80 and over practice guideline 

Supplementary material

12603_2018_1139_MOESM1_ESM.docx (68 kb)
Appendix 1. Patient Information for Treatment of Sarcopenia (poor muscle function with low muscle mass)


  1. 1.
    Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. Journal of cachexia, sarcopenia and muscle. 2016;7(5):512–4.Google Scholar
  2. 2.
    Rosenberg IH. Sarcopenia: origins and clinical relevance. Clinics in geriatric medicine. 2011;27(3):337–9.Google Scholar
  3. 3.
    Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association. 2014;15(2):95–101.Google Scholar
  4. 4.
    Yoshimura Y, Wakabayashi H, Yamada M, Kim H, Harada A, Arai H. Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. Journal of the American Medical Directors Association. 2017;18(6):553.e1-.e16.Google Scholar
  5. 5.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. Journal of the American Medical Directors Association. 2011;12(4):249–56.Google Scholar
  6. 6.
    Akishita M, Kozaki K, Iijima K, Tanaka T, Shibasaki K, Ogawa S, et al. Chapter 1 Definitions and diagnosis of sarcopenia. Geriatrics & gerontology international. 2018;18 (Suppl. 1)):7-12.Google Scholar
  7. 7.
    Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, et al. Prevalence and risk factors of sarcopenia among nursing home older residents. The journals of gerontology Series A, Biological sciences and medical sciences. 2012;67(1):48–55.Google Scholar
  8. 8.
    Bianchi L, Abete P, Bellelli G, Bo M, Cherubini A, Corica F, et al. Prevalence and Clinical Correlates of Sarcopenia, Identified According to the EWGSOP Definition and Diagnostic Algorithm, in Hospitalized Older People: The GLISTEN Study. The journals of gerontology Series A, Biological sciences and medical sciences. 2017;72(11):1575–81.Google Scholar
  9. 9.
    Cerri AP, Bellelli G, Mazzone A, Pittella F, Landi F, Zambon A, et al. Sarcopenia and malnutrition in acutely ill hospitalized elderly: Prevalence and outcomes. Clinical nutrition (Edinburgh, Scotland). 2015;34(4):745–51.Google Scholar
  10. 10.
    Sanchez-Rodriguez D, Marco E, Ronquillo-Moreno N, Miralles R, Vazquez-Ibar O, Escalada F, et al. Prevalence of malnutrition and sarcopenia in a post-acute care geriatric unit: Applying the new ESPEN definition and EWGSOP criteria. Clinical nutrition (Edinburgh, Scotland). 2017;36(5):1339–44.Google Scholar
  11. 11.
    Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748–59.Google Scholar
  12. 12.
    Yoshida D, Suzuki T, Shimada H, Park H, Makizako H, Doi T, et al. Using two different algorithms to determine the prevalence of sarcopenia. Geriatrics & gerontology international. 2014;14 Suppl 1:46–51.Google Scholar
  13. 13.
    Castillo EM, Goodman-Gruen D, Kritz-Silverstein D, Morton DJ, Wingard DL, Barrett-Connor E. Sarcopenia in elderly men and women: the Rancho Bernardo study. American journal of preventive medicine. 2003;25(3):226–31.Google Scholar
  14. 14.
    Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society. 2002;50(5):889–96.Google Scholar
  15. 15.
    Shimotakta H, Shimada H, Satake S, Endo N, Shibasaki K, Ogawa S, et al. Chapter 2 Epidemiology of sarcopenia. Geriatrics & gerontology international. 2018;18 (Suppl. 1):13–22.Google Scholar
  16. 16.
    Davies B, Garcia F, Ara I, Artalejo FR, Rodriguez-Manas L, Walter S. Relationship Between Sarcopenia and Frailty in the Toledo Study of Healthy Aging: A Population Based Cross-Sectional Study. Journal of the American Medical Directors Association. 2018;19(4):282–6.Google Scholar
  17. 17.
    Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology—update 2014. Journal of cachexia, sarcopenia and muscle. 2014;5(4):253–9.Google Scholar
  18. 18.
    Ethgen O, Beaudart C, Buckinx F, Bruyere O, Reginster JY. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcified tissue international. 2017;100(3):229–34.Google Scholar
  19. 19.
    Arai H, Wakabayashi H, Yoshimura Y, Yamada M, Kim H, Harada A. Chapter 4 Treatment of sarcopenia. Geriatrics & gerontology international. 2018;18 (Suppl 1):1-17.Google Scholar
  20. 20.
    Landi F, Calvani R, Cesari M, Tosato M, Martone AM, Ortolani E, et al. Sarcopenia: An Overview on Current Definitions, Diagnosis and Treatment. Current protein & peptide science. 2018;19(7):633–8.Google Scholar
  21. 21.
    Perez-Zepeda MU, Sgaravatti A, Dent E. Sarcopenia and post-hospital outcomes in older adults: A longitudinal study. Archives of gerontology and geriatrics. 2017;69:105–9.Google Scholar
  22. 22.
    Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ: Canadian Medical Association journal = journal de l’Association medicale canadienne. 2010;182(18):E839-42.Google Scholar
  23. 23.
    Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clinical research ed). 2008;336(7650):924–6.Google Scholar
  24. 24.
    Alonso-Coello P, Oxman AD, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ (Clinical research ed). 2016;353:i2089.Google Scholar
  25. 25.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.Google Scholar
  26. 26.
    Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. The journals of gerontology Series A, Biological sciences and medical sciences. 2014;69(5):547–58.Google Scholar
  27. 27.
    Cruz JE, Fahim G, Moore K. Practice Guideline Development, Grading, and Assessment. P & T: a peer-reviewed journal for formulary management. 2015;40(12):854–7.Google Scholar
  28. 28.
    Woolf S, Schunemann HJ, Eccles MP, Grimshaw JM, Shekelle P. Developing clinical practice guidelines: types of evidence and outcomes; values and economics, synthesis, grading, and presentation and deriving recommendations. Implementation science: IS. 2012;7:61.Google Scholar
  29. 29.
    World Health Organisation. WHO handbook for guideline development, 2nd ed: World Health Organization; 2014. Available from: handle/10665/145714.Google Scholar
  30. 30.
    Woo J, Leung J, Morley JE. Defining sarcopenia in terms of incident adverse outcomes. Journal of the American Medical Directors Association. 2015;16(3):247–52.Google Scholar
  31. 31.
    Bijlsma AY, Meskers CG, van den Eshof N, Westendorp RG, Sipila S, Stenroth L, et al. Diagnostic criteria for sarcopenia and physical performance. Age (Dordrecht, Netherlands). 2014;36(1):275–85.Google Scholar
  32. 32.
    Woo J, Leung J, Morley JE. Validating the SARC-F: a suitable community screening tool for sarcopenia? Journal of the American Medical Directors Association. 2014;15(9):630–4.Google Scholar
  33. 33.
    Law TD, Clark LA, Clark BC. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annual review of gerontology & geriatrics. 2016;36(1):205–28.Google Scholar
  34. 34.
    von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. Journal of cachexia, sarcopenia and muscle. 2010;1(2):129–33.Google Scholar
  35. 35.
    Morley JE, Anker SD, von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology-update 2014. Journal of cachexia, sarcopenia and muscle. 2014;5(4):253–9.Google Scholar
  36. 36.
    Yamada M, Nishiguchi S, Fukutani N, Tanigawa T, Yukutake T, Kayama H, et al. Prevalence of sarcopenia in community-dwelling Japanese older adults. Journal of the American Medical Directors Association. 2013;14(12):911–5.Google Scholar
  37. 37.
    Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm. The journals of gerontology Series A, Biological sciences and medical sciences. 2014;69(4):438–46.Google Scholar
  38. 38.
    Smoliner C, Sieber CC, Wirth R. Prevalence of sarcopenia in geriatric hospitalized patients. Journal of the American Medical Directors Association. 2014;15(4):267–72.Google Scholar
  39. 39.
    Beaudart C, Reginster JY, Slomian J, Buckinx F, Locquet M, Bruyere O. Prevalence of sarcopenia: the impact of different diagnostic cut-off limits. Journal of musculoskeletal & neuronal interactions. 2014;14(4):425–31.Google Scholar
  40. 40.
    Morley JE, Malmstrom TK. Frailty, sarcopenia, and hormones. Endocrinology and metabolism clinics of North America. 2013;42(2):391–405.Google Scholar
  41. 41.
    Liguori I, Russo G, Aran L, Bulli G, Curcio F, Della-Morte D, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clinical interventions in aging. 2018;13:913–27.Google Scholar
  42. 42.
    Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing. 2013;42(2):203–9.Google Scholar
  43. 43.
    Kuzuya M, Sugimoto K, Suzuki T, Watanabe Y, Kamibayashi K, Kurihara T, et al. Chapter 3 Prevention of sarcopenia. Geriatrics & gerontology international. 2018;18((Suppl. 1)):23-7.Google Scholar
  44. 44.
    Kim S, Kim M, Won CW. Validation of the Korean Version of the SARC-F Questionnaire to Assess Sarcopenia: Korean Frailty and Aging Cohort Study. Journal of the American Medical Directors Association. 2018;19(1):40–5.e1.Google Scholar
  45. 45.
    Ida S, Nakai M, Ito S, Ishihara Y, Imataka K, Uchida A, et al. Association Between Sarcopenia and Mild Cognitive Impairment Using the Japanese Version of the SARC-F in Elderly Patients With Diabetes. Journal of the American Medical Directors Association. 2017;18(9):809.e9-.e13.Google Scholar
  46. 46.
    Kemmler W, Sieber C, Freiberger E, von Stengel S. The SARC-F Questionnaire: Diagnostic Overlap with Established Sarcopenia Definitions in Older German Men with Sarcopenia. Gerontology. 2017;63(5):411–6.Google Scholar
  47. 47.
    Rolland Y, Dupuy C, Abellan Van Kan G, Cesari M, Vellas B, Faruch M, et al. Sarcopenia Screened by the SARC-F Questionnaire and Physical Performances of Elderly Women: A Cross-Sectional Study. Journal of the American Medical Directors Association. 2017;18(10):848–52.Google Scholar
  48. 48.
    Cao L, Chen S, Zou C, Ding X, Gao L, Liao Z, et al. A pilot study of the SARC-F scale on screening sarcopenia and physical disability in the Chinese older people. The journal of nutrition, health & aging. 2014;18(3):277–83.Google Scholar
  49. 49.
    Parra-Rodriguez L, Szlejf C, Garcia-Gonzalez AI, Malmstrom TK, Cruz-Arenas E, Rosas-Carrasco O. Cross-Cultural Adaptation and Validation of the Spanish-Language Version of the SARC-F to Assess Sarcopenia in Mexican Community-Dwelling Older Adults. Journal of the American Medical Directors Association. 2016;17(12):1142–6.Google Scholar
  50. 50.
    Barbosa-Silva TG, Menezes AM, Bielemann RM, Malmstrom TK, Gonzalez MC. Enhancing SARC-F: Improving Sarcopenia Screening in the Clinical Practice. Journal of the American Medical Directors Association. 2016;17(12):1136–41.Google Scholar
  51. 51.
    Calvani R, Marini F, Cesari M, Tosato M, Picca A, Anker SD, et al. Biomarkers for physical frailty and sarcopenia. Aging clinical and experimental research. 2017;29(1):29–34.Google Scholar
  52. 52.
    Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, et al. Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. Journal of cachexia, sarcopenia and muscle. 2012;3(3):181–90.Google Scholar
  53. 53.
    Morley JE. Frailty and Sarcopenia: The New Geriatric Giants. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion. 2016;68(2):59–67.Google Scholar
  54. 54.
    Beaudart C, McCloskey E, Bruyere O, Cesari M, Rolland Y, Rizzoli R, et al. Sarcopenia in daily practice: assessment and management. BMC geriatrics. 2016;16(1):170.Google Scholar
  55. 55.
    Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. Journal of cachexia, sarcopenia and muscle. 2016;7(1):28–36.Google Scholar
  56. 56.
    Tanaka S, Kamiya K, Hamazaki N, Matsuzawa R, Nozaki K, Maekawa E, et al. Utility of SARC-F for Assessing Physical Function in Elderly Patients With Cardiovascular Disease. Journal of the American Medical Directors Association. 2017;18(2):176–81.Google Scholar
  57. 57.
    Ida S, Kaneko R, Murata K. SARC-F for Screening of Sarcopenia Among Older Adults: A Meta-analysis of Screening Test Accuracy. Journal of the American Medical Directors Association. 2018.Google Scholar
  58. 58.
    Yang M, Hu X, Xie L, Zhang L, Zhou J, Lin J, et al. Screening Sarcopenia in Community-Dwelling Older Adults: SARC-F vs SARC-F Combined With Calf Circumference (SARC-CalF). Journal of the American Medical Directors Association. 2018;19(3):277.e1-.e8.Google Scholar
  59. 59.
    Cruz-Jentoft A, Bahat G, Bauer JM, Boirie Y, Bruyere O T. C, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018; EPub ahead of print, doi: 10.1093/ageing/afy169.Google Scholar
  60. 60.
    Locquet M, Beaudart C, Reginster JY, Petermans J, Bruyere O. Comparison of the performance of five screening methods for sarcopenia. Clinical epidemiology. 2018;10:71–82.Google Scholar
  61. 61.
    Dam TT, Peters KW, Fragala M, Cawthon PM, Harris TB, McLean R, et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. The journals of gerontology Series A, Biological sciences and medical sciences. 2014;69(5):584–90.Google Scholar
  62. 62.
    Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clinical nutrition (Edinburgh, Scotland). 2017;36(1):49–64.Google Scholar
  63. 63.
    McLean RR, Kiel DP, Berry SD, Broe KE, Zhang X, Cupples LA, et al. Lower Lean Mass Measured by Dual-Energy X-ray Absorptiometry (DXA) is Not Associated with Increased Risk of Hip Fracture in Women: The Framingham Osteoporosis Study. Calcified tissue international. 2018.Google Scholar
  64. 64.
    Cawthon PM, Orwoll ES, Peters KE, Ensrud KE, Cauley JA, Kado DM, et al. Strong Relation between Muscle Mass Determined by D3-creatine Dilution, Physical Performance and Incidence of Falls and Mobility Limitations in a Prospective Cohort of Older Men. The Journals of Gerontology: Series A. 2018:gly129-gly.Google Scholar
  65. 65.
    Messina C, Maffi G, Vitale JA, Ulivieri FM, Guglielmi G, Sconfienza LM. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quantitative imaging in medicine and surgery. 2018;8(1):86–99.Google Scholar
  66. 66.
    Ismail C, Zabal J, Hernandez HJ, Woletz P, Manning H, Teixeira C, et al. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia. Frontiers in physiology. 2015;6:302.Google Scholar
  67. 67.
    Hellerstein M, Evans W. Recent advances for measurement of protein synthesis rates, use of the ‘Virtual Biopsy’ approach, and measurement of muscle mass. Curr Opin Clin Nutr Metab Care. 2017;20(3):191–200.Google Scholar
  68. 68.
    Reiss J, Iglseder B, Kreutzer M, Weilbuchner I, Treschnitzer W, Kassmann H, et al. Case finding for sarcopenia in geriatric inpatients: performance of bioimpedance analysis in comparison to dual X-ray absorptiometry. BMC geriatrics. 2016;16:52.Google Scholar
  69. 69.
    Kim M, Kim H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. European journal of clinical nutrition. 2013;67(4):395–400.Google Scholar
  70. 70.
    Lourenco RA, Perez-Zepeda M, Gutierrez-Robledo L, Garcia-Garcia FJ, Rodriguez Manas L. Performance of the European Working Group on Sarcopenia in Older People algorithm in screening older adults for muscle mass assessment. Age Ageing. 2015;44(2):334–8.Google Scholar
  71. 71.
    Borde R, Hortobagyi T, Granacher U. Dose-Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, NZ). 2015;45(12):1693–720.Google Scholar
  72. 72.
    Manini TM, Clark BC, Tracy BL, Burke J, Ploutz-Snyder L. Resistance and functional training reduces knee extensor position fluctuations in functionally limited older adults. European journal of applied physiology. 2005;95(5–6):436–46.Google Scholar
  73. 73.
    Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A, Celis-Morales C, Ramirez-Velez R, Gentil P, et al. High-speed resistance training in elderly women: Effects of cluster training sets on functional performance and quality of life. Experimental gerontology. 2018;110:216–22.Google Scholar
  74. 74.
    Lazarus NR, Izquierdo M, Higginson IJ, Harridge SDR. Exercise Deficiency Diseases of Ageing: The Primacy of Exercise and Muscle Strengthening as First-Line Therapeutic Agents to Combat Frailty. Journal of the American Medical Directors Association. 2018;19(9):741–3.Google Scholar
  75. 75.
    Barbalho MSM, Gentil P, Izquierdo M, Fisher J, Steele J, Raiol RA. There are no no-responders to low or high resistance training volumes among older women. Experimental gerontology. 2017;99:18–26.Google Scholar
  76. 76.
    Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, Kato H, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. Journal of the American Geriatrics Society. 2012;60(1):16–23.Google Scholar
  77. 77.
    Kim H, Suzuki T, Saito K, Yoshida H, Kojima N, Kim M, et al. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. Geriatrics & gerontology international. 2013;13(2):458–65.Google Scholar
  78. 78.
    Dent E, Lien C, Lim WS, Wong WC, Wong CH, Ng TP, et al. The Asia-Pacific Clinical Practice Guidelines for the Management of Frailty. Journal of the American Medical Directors Association. 2017;18(7):564–75.Google Scholar
  79. 79.
    Mijnarends DM, Schols JM, Meijers JM, Tan FE, Verlaan S, Luiking YC, et al. Instruments to assess sarcopenia and physical frailty in older people living in a community (care) setting: similarities and discrepancies. Journal of the American Medical Directors Association. 2015;16(4):301–8.Google Scholar
  80. 80.
    Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: A review. Eur J Intern Med. 2016;31:3–10.Google Scholar
  81. 81.
    Binder EF, Yarasheski KE, Steger-May K, Sinacore DR, Brown M, Schechtman KB, et al. Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. The journals of gerontology Series A, Biological sciences and medical sciences. 2005;60(11):1425–31.Google Scholar
  82. 82.
    Beaudart C, Locquet M, Reginster JY, Delandsheere L, Petermans J, Bruyere O. Quality of life in sarcopenia measured with the SarQoL(R): impact of the use of different diagnosis definitions. Aging clinical and experimental research. 2018;30(4):307–13.Google Scholar
  83. 83.
    Picorelli AM, Pereira LS, Pereira DS, Felicio D, Sherrington C. Adherence to exercise programs for older people is influenced by program characteristics and personal factors: a systematic review. Journal of physiotherapy. 2014;60(3):151–6.Google Scholar
  84. 84.
    Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clinical nutrition (Edinburgh, Scotland). 2014;33(6):929–36.Google Scholar
  85. 85.
    Valenzuela PL, Morales JS, Pareja-Galeano H, Izquierdo M, Emanuele E, de la Villa P, et al. Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing research reviews. 2018;47:80–8.Google Scholar
  86. 86.
    de Souto Barreto P, Morley JE, Chodzko-Zajko W, K HP, Weening-Djiksterhuis E, Rodriguez-Manas L, et al. Recommendations on Physical Activity and Exercise for Older Adults Living in Long-Term Care Facilities: A Taskforce Report. Journal of the American Medical Directors Association. 2016;17(5):381–92.Google Scholar
  87. 87.
    Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. Journal of the American Medical Directors Association. 2015;16(9):740–7.Google Scholar
  88. 88.
    Cramer JT, Cruz-Jentoft AJ, Landi F, Hickson M, Zamboni M, Pereira SL, et al. Impacts of High-Protein Oral Nutritional Supplements Among Malnourished Men and Women with Sarcopenia: A Multicenter, Randomized, Double-Blinded, Controlled Trial. Journal of the American Medical Directors Association. 2016;17(11):1044–55.Google Scholar
  89. 89.
    Cruz-Jentoft AJ. Beta-Hydroxy-Beta-Methyl Butyrate (HMB): From Experimental Data to Clinical Evidence in Sarcopenia. Current protein & peptide science. 2018;19(7):668–72.Google Scholar
  90. 90.
    Chen LK, Lee WJ, Peng LN, Liu LK, Arai H, Akishita M. Recent Advances in Sarcopenia Research in Asia: 2016 Update From the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association. 2016;17(8):767. e1-7.Google Scholar
  91. 91.
    Zdzieblik D, Oesser S, Baumstark MW, Gollhofer A, Konig D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. The British journal of nutrition. 2015;114(8):1237–45.Google Scholar
  92. 92.
    Kim H, Kim M, Kojima N, Fujino K, Hosoi E, Kobayashi H, et al. Exercise and Nutritional Supplementation on Community-Dwelling Elderly Japanese Women With Sarcopenic Obesity: A Randomized Controlled Trial. Journal of the American Medical Directors Association. 2016;17(11):1011–9.Google Scholar
  93. 93.
    Gumieiro DN, Murino Rafacho BP, Buzati Pereira BL, Cavallari KA, Tanni SE, Azevedo PS, et al. Vitamin D serum levels are associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture. Nutrition (Burbank, Los Angeles County, Calif). 2015;31(7–8):931–4.Google Scholar
  94. 94.
    Girgis CM, Baldock PA, Downes M. Vitamin D, muscle and bone: Integrating effects in development, aging and injury. Molecular and cellular endocrinology. 2015;410:3–10.Google Scholar
  95. 95.
    Holick MF. Bioavailability of vitamin D and its metabolites in black and white adults. The New England journal of medicine. 2013;369(21):2047–8.Google Scholar
  96. 96.
    McKee A, Morley JE, Matsumoto AM, Vinik A. SARCOPENIA: AN ENDOCRINE DISORDER? Endocrine practice: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2017;23(9):1140–9.Google Scholar
  97. 97.
    Huff H, Merchant AT, Lonn E, Pullenayegum E, Smaill F, Smieja M. Vitamin D and progression of carotid intima-media thickness in HIV-positive Canadians. HIV medicine. 2018;19(2):143–51.Google Scholar
  98. 98.
    Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mechanisms of ageing and development. 1999;107(2):123–36.Google Scholar
  99. 99.
    Papanicolaou DA, Ather SN, Zhu H, Zhou Y, Lutkiewicz J, Scott BB, et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. The journal of nutrition, health & aging. 2013;17(6):533–43.Google Scholar
  100. 100.
    Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clinical endocrinology. 2005;63(3):280–93.Google Scholar
  101. 101.
    Snyder P, Bhasin S, Cunningham G, Matsumoto A, Stephens-Shields A, Cauley J, et al. Effects of Testosterone Treatment in Older Men. The New England journal of medicine. 2016;374(7):611–24.Google Scholar
  102. 102.
    Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, et al. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. Journal of cachexia, sarcopenia and muscle. 2011;2(3):153–61.Google Scholar
  103. 103.
    Coss CC, Jones A, Hancock ML, Steiner MS, Dalton JT. Selective androgen receptor modulators for the treatment of late onset male hypogonadism. Asian Journal of Andrology. 2014;16(2):256–61.Google Scholar
  104. 104.
    Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML, et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013;14(4):335–45.Google Scholar
  105. 105.
    Kim MJ, Morley JE. The hormonal fountains of youth: myth or reality? Journal of endocrinological investigation. 2005;28(11 Suppl Proceedings):5-14.Google Scholar
  106. 106.
    Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. Jama. 2002;288(18):2282–92.Google Scholar
  107. 107.
    Kaiser FE, Silver AJ, Morley JE. The effect of recombinant human growth hormone on malnourished older individuals. Journal of the American Geriatrics Society. 1991;39(3):235–40.Google Scholar
  108. 108.
    Garcia JM, Boccia RV, Graham CD, Yan Y, Duus EM, Allen S, et al. Anamorelin for patients with cancer cachexia: an integrated analysis of two phase 2, randomised, placebo-controlled, double-blind trials. Lancet Oncol. 2015;16(1):108–16.Google Scholar
  109. 109.
    Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, et al. A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Annals of neurology. 2008;63(5):561–71.Google Scholar
  110. 110.
    Padhi D, Higano CS, Shore ND, Sieber P, Rasmussen E, Smith MR. Pharmacological inhibition of myostatin and changes in lean body mass and lower extremity muscle size in patients receiving androgen deprivation therapy for prostate cancer. The Journal of clinical endocrinology and metabolism. 2014;99(10):E1967-75.Google Scholar
  111. 111.
    Amato AA, Sivakumar K, Goyal N, David WS, Salajegheh M, Praestgaard J, et al. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology. 2014;83(24):2239–46.Google Scholar
  112. 112.
    Attie KM, Borgstein NG, Yang Y, Condon CH, Wilson DM, Pearsall AE, et al. A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. Muscle & nerve. 2013;47(3):416–23.Google Scholar
  113. 113.
    Morley JE. Pharmacologic Options for the Treatment of Sarcopenia. Calcified tissue international. 2016;98(4):319–33.Google Scholar
  114. 114.
    Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. Jama. 2014;311(23):2387–96.Google Scholar
  115. 115.
    Bann D, Hire D, Manini T, Cooper R, Botoseneanu A, McDermott MM, et al. Light Intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the Lifestyle Interventions and Independence for Elders (LIFE) study. PloS one. 2015;10(2):e0116058.Google Scholar
  116. 116.
    Marzetti E, Calvani R, Landi F, Hoogendijk EO, Fougere B, Vellas B, et al. Innovative Medicines Initiative: The SPRINTT Project. The Journal of frailty & aging. 2015;4(4):207–8.Google Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Elsa Dent
    • 1
    • 2
    Email author
  • J. E. Morley
    • 3
  • A. J. Cruz-Jentoft
    • 4
  • H. Arai
    • 5
  • S. B. Kritchevsky
    • 6
  • J. Guralnik
    • 7
  • J. M. Bauer
    • 8
  • M. Pahor
    • 9
  • B. C. Clark
    • 10
  • M. Cesari
    • 11
    • 12
  • J. Ruiz
    • 13
  • C. C. Sieber
    • 14
  • M. Aubertin-Leheudre
    • 15
  • D. L. Waters
    • 16
  • R. Visvanathan
    • 17
  • F. Landi
    • 18
  • D. T. Villareal
    • 19
  • R. Fielding
    • 20
  • C. W. Won
    • 21
  • O. Theou
    • 17
    • 22
  • F. C. Martin
    • 23
  • B. Dong
    • 24
  • J. Woo
    • 25
  • L. Flicker
    • 26
  • L. Ferrucci
    • 27
  • R. A. Merchant
    • 28
  • L. Cao
    • 29
  • T. Cederholm
    • 30
  • S. M. L. Ribeiro
    • 31
  • L. Rodríguez-Mañas
    • 32
  • S. D. Anker
    • 33
    • 37
    • 34
    • 35
    • 36
  • J. Lundy
    • 38
  • L. M. Gutiérrez Robledo
    • 39
  • I. Bautmans
    • 40
    • 41
    • 42
  • I. Aprahamian
    • 43
  • J. M. G. A. Schols
    • 44
  • M. Izquierdo
    • 45
  • B. Vellas
    • 46
  1. 1.Torrens University AustraliaAdelaideAustralia
  2. 2.Baker Heart and Diabetes InstituteMelbourneAustralia
  3. 3.Division of Geriatric Medicine, School of MedicineSaint Louis UniversitySt. LouisUSA
  4. 4.Servicio de Geriatría Hospital Universitario Ramón y Cajal (IRYCIS)MadridSpain
  5. 5.National Center for Geriatrics and GerontologyObuJapan
  6. 6.Sticht Center for Healthy Aging and Alzheimer’s PreventionWake Forest School of MedicineWinston-SalemUSA
  7. 7.Dept of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreUSA
  8. 8.Center for Geriatric MedicineHeidelberg University Agaplesion Bethanien KrankenhausHeidelbergGermany
  9. 9.Dept of Aging & Geriatric ResearchUniversity of FloridaGainesvilleUSA
  10. 10.Ohio Musculoskeletal and Neurological Institute (OMNI)AthensUSA
  11. 11.Geriatric UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  12. 12.Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
  13. 13.Division of Geriatrics & Palliative MedicineUniversity of Miami Miller School of MedicineMiamiUSA
  14. 14.Institute for Biomedicine on AgeingFriedrich-Alexander-University Erlangen-NürnbergNürnbergGermany
  15. 15.Département des sciences de l’activité physique, Faculté des sciencesUniversité du Quebec à MontrealMontréalCanada
  16. 16.Dept of Medicine/School of PhysiotherapyUniversity of OtagoDunedinNew Zealand
  17. 17.Adelaide Geriatrics Training and Research with Aged Care (GTRAC) Centre, Adelaide Medical School, Faculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
  18. 18.Fondazione Policlinico A. GemelliRomaItaly
  19. 19.Center for Translational Research on Inflammatory DiseasesMichael E DeBakey VA Medical Center and Baylor College of MedicineHoustonUSA
  20. 20.Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonUSA
  21. 21.Elderly Frailty Research Center, Department of Family Medicine, College of MedicineKyung Hee UniversitySeoulKorea
  22. 22.Department of MedicineDalhousie UniversityHalifaxCanada
  23. 23.Population Health SciencesKing’s CollegeLondonUK
  24. 24.National Clinical Research Center of Geriatrics, West China HospitalSichuan UniverstiyChengduChina
  25. 25.Department of MedicineThe Chinese University of Hong KongHong KongChina
  26. 26.Western Australian Centre for Health and Ageing, Medical SchoolUniversity of Western AustraliaPerthAustralia
  27. 27.Intramural Research Program of the National Institute on AgingBethesdaUSA
  28. 28.Division of Geriatric Medicine, Department of MedicineNational University Hospital, National University Health SystemSingaporeSingapore
  29. 29.Center of Gerontology and Geriatrics, West China hospitalSichuan UniversityChengdu, SichuanChina
  30. 30.Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University and Theme AgingKarolinska University HospitalStockholmSweden
  31. 31.School of Public HealthUniversity of São PauloSão PauloBrazil
  32. 32.Servicio de Geriatria, Servicio de GeriatriHospital Universitario de GetafeMadridSpain
  33. 33.Department of Cardiology (CVK)BerlinGermany
  34. 34.Berlin-Brandenburg Center for Regenerative Therapies (BCRT)BerlinGermany
  35. 35.German Centre for Cardiovascular Research (DZHK) partner site BerlinBerlinGermany
  36. 36.Charité UniversitätsmedizinBerlinGermany
  37. 37.Department of Cardiology and PneumologyUniversity of Göttingen Medical SchoolGöttingenGermany
  38. 38.Perry County Memorial HospitalPerryvilleUSA
  39. 39.National Institute of GeriatricsMexico CityMexico
  40. 40.Gerontology DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
  41. 41.Frailty in Ageing (FRIA) Research DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
  42. 42.Geriatrics DepartmentUniversitair Ziekenhuis Brussel (UZ Brussel)BrusselsBelgium
  43. 43.Department of Internal Medicine, Division of GeriatricsFaculty of Medicine of JundiaíJundiaíBrazil
  44. 44.FHML, Caphri, Dept. Health Services Research and Dept. Family Medicine (section Old Age Medicine)Maastricht UniversityMaastrichtThe Netherlands
  45. 45.Department of Health Sciences, Public University of Navarre, CIBER de Fragilidad y Envejecimiento Saludable, Navarrabiomed, IdiSNANavarra Institute for Health ResearchPamplona, NavarraSpain
  46. 46.Gérontopôle CliniqueCHU ToulouseToulouseFrance

Personalised recommendations