Advertisement

Evaluation of Oxidative Stress Parameters and Antioxidant Status in Plasma and Erythrocytes of Elderly Diabetic Patients with Sarcopenia

  • A. H. E. Küçükdiler
  • M. Varli
  • Ö. Yavuz
  • Ahmet YalçinEmail author
  • H. Selvi Öztorun
  • E. Devrim
  • S. Aras
Article
  • 28 Downloads

Abstract

Objectives

Oxidative stress may play a role in the pathogenesis of both sarcopenia and diabetes. Although the risk of sarcopenia is increased in people with type 2 diabetes, the relationship between sarcopenia oxidative stress and antioxidant status among the older diabetes population is not well studied. The aim of this present study was to evaluate the relationship between oxidative stress and antioxidant status and sarcopenia in elderly diabetic patients.

Design

This was a cross-sectional designed study with a control group. A total of 60 type 2 diabetic elderly patients were enrolled in the study (30 sarcopenic and 30 controls).

Measurements

Comprehensive geriatric assessments and anthropometric measurements were performed. Sarcopenia was diagnosed according to the European Working Group on Sarcopenia in Older People. Skeletal muscle mass was measured using bioelectrical impedance analysis. A handheld dynamometer was used for skeletal muscle strength measurements. Gait speed was measured using a 4 meter walking test. Plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and erythrocyte MDA, GSH-Px, superoxide dismutase (SOD), catalase and xanthine oxidase (XO) measurements were performed.

Results

While plasma XO was significantly higher in sarcopenic individuals (0.406(0.225-0.775)) compared to controls (0.312(0.112-0.712)) (p=0.006), plasma GSHPx was significantly lower in sarcopenic individuals (0.154(0.101-0.274)) compared to controls (0.204(0.12-.0312)) (p=0.003). Plasma XO (OR: 2.69 (CI 95% 0.13-52.76, p=0.041) and BMI (OR: 0.6 (CI 95% 0.41-0.89, p=0.009) were independently associated with sarcopenia of diabetes in multivariate analysis.

Conclusions

Only plasma XO was found to be independently associated with sarcopenia. XO can be important in the pathogenesis of sarcopenia in diabetes. Oxidative stress and antioxidant status might be associated with sarcopenia in diabetic older individuals but this association seems to be mediated by other factors. Further studies are needed on this subject.

Key words

Aged diabetes mellitus oxidative stress sarcopenia 

References

  1. 1.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23. doi:10.1093/ageing/afq034.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748–59. doi:10.1093/ageing/afu115.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–9. doi:10.1016/j.clnu.2009.12.004.CrossRefPubMedGoogle Scholar
  4. 4.
    Sorg O. Oxidative stress: a theoretical model or a biological reality? C R Biol. 2004;327(7):649–62.CrossRefPubMedGoogle Scholar
  5. 5.
    Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci. 2010;11(4):1509–26. doi:10.3390/ijms11041509.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Morley JE, Malmstrom TK, Rodriguez-Manas L, Sinclair AJ. Frailty, sarcopenia and diabetes. J Am Med Dir Assoc. 2014;15(12):853–9. doi:10.1016/j.jamda.2014.10.001.CrossRefPubMedGoogle Scholar
  7. 7.
    Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care. 2007;30(6):1507–12. doi:10.2337/dc06-2537.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang T, Feng X, Zhou J, Gong H, Xia S, Wei Q et al. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci Rep. 2016;6:38937. doi:10.1038/srep38937.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol (1985). 2000;89(2):465–71.CrossRefGoogle Scholar
  10. 10.
    Dahle LK, Hill EG, Holman RT. The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch Biochem Biophys. 1962;98:253–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Durak I, Canbolat O, Kavutcu M, Ozturk HS, Yurtarslani Z. Activities of total, cytoplasmic, and mitochondrial superoxide dismutase enzymes in sera and pleural fluids from patients with lung cancer. J Clin Lab Anal. 1996;10(1):17–20. doi:10.1002/(SICI)1098-2825(1996)10:1<17::AID-JCLA4>3.0.CO;2-I.CrossRefPubMedGoogle Scholar
  12. 12.
    Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–69.PubMedGoogle Scholar
  13. 13.
    Bergmeyer HU. Methods of enzymatic analysis. 2d English ed. Weinheim New York: Verlag Chemie; Academic Press; 1974.Google Scholar
  14. 14.
    Hashimoto S. A new spectrophotometric assay method of xanthine oxidase in crude tissue homogenate. Anal Biochem. 1974;62(2):426–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-Curi TC. Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech Ageing Dev. 2007;128(3):267–75. doi:10.1016/j.mad.2006.12.006.CrossRefPubMedGoogle Scholar
  16. 16.
    Ryan MJ, Jackson JR, Hao Y, Leonard SS, Alway SE. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice. Free Radic Biol Med. 2011;51(1):38–52. doi:10.1016/j.freeradbiomed.2011.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Derbre F, Ferrando B, Gomez-Cabrera MC, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G et al. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases. PLoS One. 2012;7(10):e46668. doi:10.1371/journal.pone.0046668.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Delample D, Durand F, Severac A, Belghith M, Mas E, Michel F et al. Implication of xanthine oxidase in muscle oxidative stress in COPD patients. Free Radic Res. 2008;42(9):807–14. doi:10.1080/10715760802429039.CrossRefPubMedGoogle Scholar
  19. 19.
    Ji LL, Dillon D, Wu E. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am J Physiol. 1990;258(4 Pt 2):R918–23.PubMedGoogle Scholar
  20. 20.
    Kumaran S, Savitha S, Anusuya Devi M, Panneerselvam C. L-carnitine and DL-alphalipoic acid reverse the age-related deficit in glutathione redox state in skeletal muscle and heart tissues. Mech Ageing Dev. 2004;125(7):507–12. doi:10.1016/j. mad.2004.05.004.CrossRefPubMedGoogle Scholar
  21. 21.
    Pansarasa O, Bertorelli L, Vecchiet J, Felzani G, Marzatico F. Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic Biol Med. 1999;27(5-6):617–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Baumann CW, Kwak D, Liu HM, Thompson LV. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol (1985. 2016;121(5):1047–52. doi:10.1152/japplphysiol.00321.2016.CrossRefGoogle Scholar
  23. 23.
    Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS et al. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev. 2010;9(4):369–83. doi:10.1016/j.arr.2010.04.004.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–8. doi:10.2337/db05-1183.CrossRefPubMedGoogle Scholar
  25. 25.
    Ferrando B, Olaso-Gonzalez G, Sebastia V, Viosca E, Gomez-Cabrera MC, Vina J. [Allopurinol and its role in the treatment of sarcopenia]. Rev Esp Geriatr Gerontol. 2014;49(6):292–8. doi:10.1016/j.regg.2014.05.001.CrossRefPubMedGoogle Scholar
  26. 26.
    Konishi M, Pelgrim L, Tschirner A, Baumgarten A, von Haehling S, Palus S et al. Febuxostat improves outcome in a rat model of cancer cachexia. J Cachexia Sarcopenia Muscle. 2015;6(2):174–80. doi:10.1002/jcsm.12017.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bravard A, Bonnard C, Durand A, Chauvin MA, Favier R, Vidal H et al. Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. Am J Physiol Endocrinol Metab. 2011;300(3):E581–91. doi:10.1152/ajpendo.00455.2010.CrossRefPubMedGoogle Scholar
  28. 28.
    Agarwal E, Miller M, Yaxley A, Isenring E. Malnutrition in the elderly: a narrative review. Maturitas. 2013;76(4):296–302. doi:10.1016/j.maturitas.2013.07.013.CrossRefPubMedGoogle Scholar
  29. 29.
    Rubbieri G, Mossello E, Di Bari M. Techniques for the diagnosis of sarcopenia. Clin Cases Miner Bone Metab. 2014;11(3):181–4.PubMedPubMedCentralGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • A. H. E. Küçükdiler
    • 1
  • M. Varli
    • 1
  • Ö. Yavuz
    • 2
  • Ahmet Yalçin
    • 3
    Email author
  • H. Selvi Öztorun
    • 1
  • E. Devrim
    • 2
  • S. Aras
    • 1
  1. 1.Department of Geriatric MedicineAnkara University School of MedicineAnkaraTurkey
  2. 2.Department of BiochemistryAnkara University School of MedicineAnkaraTurkey
  3. 3.Department of Geriatric MedicineAtaturk’s Research and Training HospitalAnkaraTurkey

Personalised recommendations