The journal of nutrition, health & aging

, Volume 22, Issue 9, pp 1045–1050 | Cite as

Screening for Vitamin D Deficiency in Black Americans: Comparison of Total, Free, Bioavailable 25 Hydroxy Vitamin D Levels with Parathyroid Hormone Levels and Bone Mineral Density

  • Alexis McKeeEmail author
  • S. M. Lima Ribeiro
  • T. K. Malmstrom
  • H. M. PerryIII
  • D. K. Miller
  • S. S. Farr
  • M. L. Niehoff
  • S. G. Albert



There is debate surrounding the adequacy of total and free 25 hydroxy vitamin D [25(OH)D] levels in black Americans who have inherently high bone mineral density [BMD] and low serum concentration of vitamin D binding proteins [VDBP].


Retrospective analysis of serum samples and BMD analyses from the African American Health Study [AAHS] cohort.


The AAHS is a population-based longitudinal study initiated to examine issues of disability and frailty among urban-dwelling black Americans in the city of Saint Louis, Missouri.


122 men and 206 women, age 60.2 ± 4.3 years.


Retrospective analysis.


Total 25(OH)D, VDBP, PTH, and BMD of the lumbar spine and hip by dual energy x-ray photometry (DXA). Free and bioavailable vitamin D levels were calculated using serum concentrations and affinity constants for the VDBP (Gc1F and Gc1S) phenotypes.


Serum total 25(OH) D levels were 14.6 ± 8.9 ng/mL (36 ± 22 nmol/L). Vitamin D insufficiency was estimated by compensatory elevations of PTH above the normal range (> 65 pg/mL). PTH levels were within the normal reference range in > 95% of the samples at total 25(OH)D levels ≥ 20 ng/mL (≥50 nmol/L). There was no difference in the correlation of the reciprocal relationship of vitamin D vs parathyroid hormone between the VDBP phenotypes. Receiver operating characteristic curve analyses indicated that serum total 25(OH)D discriminated sufficiency from insufficiency at least as well as the calculated levels of the free and bioavailable vitamin D. Very low levels of total 25(OH)D (≤ 8 ng/mL, ≤20 nmol/L) were associated with decreased BMD (p=0.02), but higher levels of 25(OH)D did not show statistical differences in BMD.


Total 25(OH)D levels of ≤ 8ng/mL (≤20 nmol/L) are associated with clinically significant changes in BMD, whereas total 25(OH)D levels ≥ 20 ng/mL (≥50 nmol/L) suppressed PTH and were not associated with deficiencies in BMD. Lower levels of 25(OH)D may be acceptable for bone health in black than in white Americans.

Key words

Free vitamin D bioavailable vitamin D vitamin D binding proteins vitamin D deficiency bone mineral density 


  1. 1.
    Ross, A.C., et al., The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab, 2011. 96(1): p. 53–8.CrossRefPubMedGoogle Scholar
  2. 2.
    LeFevre, M.L., Screening for vitamin D deficiency in adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med, 2015. 162(2): p. 133–40.CrossRefPubMedGoogle Scholar
  3. 3.
    Holick, M.F., et al., Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab, 2011. 96(7): p. 1911–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Aloia, J.F., African Americans, 25-hydroxyvitamin D, and osteoporosis: a paradox. Am J Clin Nutr, 2008. 88(2): p. 545S-550S.Google Scholar
  5. 5.
    Powe, C.E., et al., Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med, 2013. 369(21): p. 1991–2000.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barrett-Connor, E., et al., Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res, 2005. 20(2): p. 185–94.CrossRefPubMedGoogle Scholar
  7. 7.
    Aloia, J., et al., Free 25(OH)D and the Vitamin D Paradox in African Americans. J Clin Endocrinol Metab, 2015. 100(9): p. 3356–63.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cauley, J.A., et al., Bone mineral density and the risk of incident nonspinal fractures in black and white women. JAMA, 2005. 293(17): p. 2102–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Cauley, J.A., et al., Clinical risk factors for fractures in multi-ethnic women: the Women’s Health Initiative. J Bone Miner Res, 2007. 22(11): p. 1816–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Cauley, J.A., et al., Prevalent vertebral fractures in black women and white women. J Bone Miner Res, 2008. 23(9): p. 1458–67.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gutierrez, O.M., et al., Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos Int, 2011. 22(6): p. 1745–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Bikle, D.D., S. Malmstroem, and J. Schwartz, Current Controversies: Are Free Vitamin Metabolite Levels a More Accurate Assessment of Vitamin D Status than Total Levels? Endocrinol Metab Clin North Am, 2017. 46(4): p. 901–918.CrossRefPubMedGoogle Scholar
  13. 13.
    Arnaud, J. and J. Constans, Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet, 1993. 92(2): p. 183–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Braun, A., R. Bichlmaier, and H. Cleve, Molecular analysis of the gene for the human vitamin-D-binding protein (group-specific component): allelic differences of the common genetic GC types. Hum Genet, 1992. 89(4): p. 401–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Bouillon, R., Genetic and Racial Differences in the Vitamin D Endocrine System. Endocrinol Metab Clin North Am, 2017. 46(4): p. 1119–1135.CrossRefPubMedGoogle Scholar
  16. 16.
    Bikle, D.D., et al., Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab, 1986. 63(4): p. 954–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Bikle, D., et al., Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J Steroid Biochem Mol Biol, 2017. 173: p. 105–116.CrossRefPubMedGoogle Scholar
  18. 18.
    Nielson, C.M., et al., Free 25-Hydroxyvitamin D: Impact of Vitamin D Binding Protein Assays on Racial-Genotypic Associations. J Clin Endocrinol Metab, 2016. 101(5): p. 2226–34.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Peris, P., et al., Comparison of total, free and bioavailable 25-OH vitamin D determinations to evaluate its biological activity in healthy adults: the LabOscat study. Osteoporos Int, 2017. 28(8): p. 2457–2464.CrossRefPubMedGoogle Scholar
  20. 20.
    Powe, C.E., S. A. Karumanchi, and R. Thadhani, Vitamin D-binding protein and vitamin D in blacks and whites. N Engl J Med, 2014. 370(9): p. 880–1.PubMedGoogle Scholar
  21. 21.
    Miller, D.K., et al., Clinically relevant levels of depressive symptoms in communitydwelling middle-aged African Americans. J Am Geriatr Soc, 2004. 52(5): p. 741–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Perry, H.M., 3rd, et al., Aging and bone metabolism in African American and Caucasian women. J Clin Endocrinol Metab, 1996. 81(3): p. 1108–17.PubMedGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Alexis McKee
    • 1
    Email author
  • S. M. Lima Ribeiro
    • 2
  • T. K. Malmstrom
    • 4
  • H. M. PerryIII
    • 3
    • 5
  • D. K. Miller
    • 6
  • S. S. Farr
    • 3
  • M. L. Niehoff
    • 3
  • S. G. Albert
    • 1
  1. 1.Division of Endocrinology, Diabetes & MetabolismSaint Louis University School of MedicineSt. LouisUSA
  2. 2.School of Public HealthUniversity of Sao PauloSao PaoloBrazil
  3. 3.Division of Geriatric MedicineSaint Louis University School of MedicineSt. LouisUSA
  4. 4.Department of Neurology and PsychiatrySaint Louis UniversitySt. LouisUSA
  5. 5.St. Louis Veterans Administration Medical CenterSt. LouisUSA
  6. 6.Regenstrief Institute, Inc.Indiana University Center for Aging ResearchIndianapolisUSA

Personalised recommendations