Advertisement

Respiratory Muscle Strength as a Discriminator of Sarcopenia in Community-Dwelling Elderly: A Cross-Sectional Study

  • Daniela Gonçalves Ohara
  • M. S. Pegorari
  • N. L. Oliveira dos Santos
  • C. de Fátima Ribeiro Silva
  • R. L. Monteiro
  • A. P. Matos
  • M. Jamami
Article
  • 27 Downloads

Abstract

Objectives

To compare the values obtained from maximum respiratory pressures (MRP) between sarcopenic and non-sarcopenic elderly; to verify the association of maximum respiratory pressures with sarcopenia and its indicators; and to establish cut-off points for MRP as a discriminator of sarcopenia.

Design

Cross-sectional study.

Location

Macapá, Brazil.

Participants

Community-dwelling elderly ≥ 60 years old, both sexes.

Measures

Evaluation of respiratory muscle strength (maximal inspiratory pressure - MIP and maximal expiratory pressure - MEP) and sarcopenia, according to the European Working Group on Sarcopenia in Older People (EWGSOP), in which the diagnosis of this condition considered the reduction of muscle mass (muscle mass index - MMI) associated with muscle strength reduction (hand grip strength - HGS) and / or impairment in physical performance (gait speed - GS).

Results

The sample consisted of 383 elderly individuals, with a mean age of 70.02 ± 7.3 years and a prevalence of sarcopenia of 12.53% (n = 48). Sarcopenic individuals presented significantly lower (obtained, obtained versus predicted) mean values for the maximal respiratory pressures compared to the non-sarcopenic elderly, and these were inversely associated with sarcopenia (an increase by 1 cmH2O in MIP and MEP reduced by 5% and 3%, respectively, the probability of sarcopenia). In relation to the association with the sarcopenia indicators, the increase by 1 cmH2O in MIP and MEP decreased, respectively, the probability of decreasing muscle strength (3% and 2%), GS (3% and 4%) and MMI (3 % - MIP). Cut-off points ≤60 cmH2O and ≤50 cmH2O for MEP and ≤55 cmH2O and ≤45 cmH2O for MEP, respectively for elderly men and women, served as a discriminant criterion for the presence of sarcopenia (area under the ROC curve superior to 0.70).

Conclusions

Elderly patients with sarcopenia had lower MIP and MEP values when compared to non-sarcopenic individuals, and respiratory muscle strength was inversely associated with the diagnosis of sarcopenia and its indicators (HGS, gait speed and MMI). Furthermore, cut-off points for MIP and MEP can be used in clinical practice as discriminators of sarcopenia in community-dwelling elderly.

Key words

Sarcopenia muscle strength respiratory muscles respiratory function tests aged 

References

  1. 1.
    Reis CS, Noronha K, Wajnman S. Population aging and hospitalization expenses of SUS: an analysis performed for Brazil between 2000 and 2010. Rev. bras. estud. Popul. 2016;33(3):591–612. doi: 10.20947/s0102-30982016c0007.CrossRefGoogle Scholar
  2. 2.
    Moraes EM. Atenção à saúde do idoso: aspectos conceituais. Brasil, 2012.Google Scholar
  3. 3.
    United Nations Organization. World population prospects: the 2017 revision, key findings and advance tables. Available: https://esa.un.org/unpd/wpp/. Accessed 02 december 2017.
  4. 4.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010; 39:412–23. doi: 10.1093/ageing/afq034.Google Scholar
  5. 5.
    Silva TAA, Frisoli Junior A, Pinheiro MM, Szejnfeld VL. Sarcopenia and aging: etiological aspects and therapeutic options. Rev. Bras. Reumatol. 2006; 46(6):391–397. doi: 10.1590/S0482-50042006000600006.CrossRefGoogle Scholar
  6. 6.
    Lalley PM. The aging respiratory system-Pulmonary structure, function and neural control. Respir Physiol Neurobiol. 2013. 187(3):199–210. doi: 10.1016/j. resp.2013.03.012.CrossRefPubMedGoogle Scholar
  7. 7.
    Izawa KP, Watanabe S, Oka K et al. Respiratory muscle strength in relation to sarcopenia in elderly cardiac patients. Aging Clin Exp Res. 2016;28(6):1143–1148. doi: 10.1007/s40520-016-0534-5.CrossRefPubMedGoogle Scholar
  8. 8.
    Instituto Brasileiro de Geografia e Estatística, 2010. Cidades. Macapá. Available: http://www.cidades.ibge.gov.br. Accessed 13 december 2017.
  9. 9.
    Instituto Brasileiro de Geografia e Estatística, 2010. Síntese de Indicadores Sociais: uma análise das condições de vida da população brasileira. Brasil.Google Scholar
  10. 10.
    Bertolucci PF, Brucki SMD, Campassi SR, Juliano IO. The Mini-Mental State Examination in an outpatient population: influence of literacy. Arq Neuropsiquiatr. 1994;52(1):1–7. doi: 10.1590/S0004-282X1994000100001.CrossRefPubMedGoogle Scholar
  11. 11.
    Souza RB. Pressões respiratórias estáticas máximas. J Pneumol. 2002; 28(Supl 3):S155–65.CrossRefGoogle Scholar
  12. 12.
    Fiore Jr JF, Paisani DM, Franceschini J et al. Maximal respiratory pressures and vital capacity: comparison between mouthpiece and face-mask evaluation methods. J Bras Pneumol. 2004; 30: 515–520. doi: 10.1590/S1806-37132004000600005.CrossRefGoogle Scholar
  13. 13.
    Green M, Road J, Sieck GC, Similowski T. Tests of respiratory muscle strenght. Am J Respir Crit Care Med. 2002; 166:528–47.Google Scholar
  14. 14.
    Rubinstein I, Slutsky AS, Rebuk AS, McClean PA, Boucher R, Szeinberg A. Assessment of maximal expiratory pressure in healthy adults. J Appl Physiol. 1988;64(5):2215–19. doi: 10.1152/jappl.1988.64.5.2215.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee RC, Wang Z, Heo M et al. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr 2000;72:796–803.CrossRefPubMedGoogle Scholar
  16. 16.
    Rech CR, Dellagrana RA, Marucci MFN et al. Validity of anthropometric equations for the estimation of muscle mass in the elderly. Rev Bras Cineantropom Desempenho Hum 2012; 14:23–31. doi: 10.5007/1980-0037.2012v14n1p23.CrossRefGoogle Scholar
  17. 17.
    Alexandre TS, Duarte YA, Santos JL, Wong R, Lebrão ML. Prevalence and associated factors of sarcopenia among elderly in Brazil: findings from the SABE study. J Nutr Health Aging. 2014 Mar;18(3):284–90. doi: 10.1007/s12603-013-0413-0.CrossRefGoogle Scholar
  18. 18.
    Pinheiro PA, Carneiro JA, Coqueiro RS, Pereira R, Fernandes MH. «Chair Stand Test» as Simple Tool for Sarcopenia Screening in Elderly Women. J Nutr Health Aging. 2016 Jan;20(1):56–9. doi: 10.1007/s12603-015-0621-x.CrossRefPubMedGoogle Scholar
  19. 19.
    Delmonico MJ, Harris TB, Lee JS, Visser M, Nevitt M, Kritchevsky SB et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55:769–774. doi: 10.1111/j.1532-5415.2007.01140.xCrossRefPubMedGoogle Scholar
  20. 20.
    Newman AB, Kupelian V, Visser M et al. Sarcopenia: Alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51(11):1602–9.CrossRefPubMedGoogle Scholar
  21. 21.
    American Society of Hand Therapists. Clinical assessment recommendations. Chicago; 1992.Google Scholar
  22. 22.
    Laurentani F, Russo RC, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A et al. Ageassociated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95(5):1851–60. doi: 10.1152/japplphysiol.00246.2003CrossRefGoogle Scholar
  23. 23.
    Nakano MM (2007) Versão Brasileira da Short Physical Performance Battery -SPPB: Adaptação Cultural e Estudo da Confiabilidade. University State of Campinas.Google Scholar
  24. 24.
    Guralnik JM, Simonsick EM, Ferrucci L et al. Lower-Extremity function in persons over the age of 70 years as predictor of subsequent disability. N Engl J Med. 1995;332(9):556–61. doi: 10.1056/NEJM199503023320902.CrossRefPubMedGoogle Scholar
  25. 25.
    Ramos LR, Perracini M, Rosa TE, Kalache A. Significance and management of disability among urban elderly residents in Brazil. J Cross Cult Gerontol. 1993;8(4):313–23. doi: 10.1007/BF00972560.CrossRefPubMedGoogle Scholar
  26. 26.
    Benedetti TRB, Mazo GZ, Barros MVG. Application of the International Physical Activity Questionnaire (IPAQ) for evaluation of elderly women: concurrent validity and test-retest reprodutibility. Rev. bras. ciênc. mov. 2004;12(1):25–33.Google Scholar
  27. 27.
    Vaz Fragoso CA, Gill TM. Respiratory Impairment and the Aging Lung: A Novel Paradigm for Assessing Pulmonary Function. J Gerontol A Biol Sci Med Sci. 2012;67(3):264–275. doi: 10.1093/gerona/glr198.CrossRefPubMedGoogle Scholar
  28. 28.
    Lowery EM, Brubaker AL, Kuhlmann E, Kovacs EJ. The aging lung. Clin Interv Aging. 2013;8:1489–1496. doi: 10.2147/CIA.S51152.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Greising SM, Mantilla CB, Gorman BA, Ermilov LG, Sieck GC. Diaphragm muscle sarcopenia in aging mice. Experimental Gerontology. 2013; 48(9):881–887. doi: 10.1016/j.exger.2013.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Greising SM, Medina-Martíneza JS, Vasdeva AK, Siecka GC, Mantillaa CB. Analysis of muscle fiber clustering in the diaphragm muscle of sarcopenic mice. Muscle Nerve. 2015;52(1):76–82. doi: 10.1002/mus.24641.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Caruso P, Albuquerque ALP, Santana PV et al. Diagnostic methods to assess inspiratory and expiratory muscle strength. J Bras Pneumol. 2015;41(2):110–123. doi: 10.1590/S1806-37132015000004474.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Souza DK, Peixoto SV. Descriptive study on the evolution of hospitalization costs for ambulatory care sensitive conditions in Brazil, 2000–2013. Epidemiol. Serv. Saúde. 2017;26(2):285–294. doi: 10.5123/s1679-49742017000200006.CrossRefPubMedGoogle Scholar
  33. 33.
    Shin HI, Kim DK, Seo KM, Kang SH, Lee, SY, Son, S. Relation Between Respiratory Muscle Strength and Skeletal Muscle Mass and Hand Grip Strength in the Healthy Elderly. Ann Rehabil Med 2017;41(4):686–692. doi: 10.5535/arm.2017.41.4.686.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J 2009;33:1165–1185. doi: 10.1183/09031936.00128008.CrossRefPubMedGoogle Scholar
  35. 35.
    Scarlata S, Cesari M, Antonelli Incalzi R. Sarcopenia in COPD. Thorax. 2015;70:693–694. doi: 10.1136/thoraxjnl-2015-206929.CrossRefPubMedGoogle Scholar
  36. 36.
    Elliott JE, Greising SM, Mantillaa CB, Sieck GC. Functional impact of sarcopenia in respiratory muscles. Respir Physiol Neurobiol. 2016;226:137–46. doi: 10.1016/j. resp.2015.10.001.CrossRefPubMedGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Daniela Gonçalves Ohara
    • 1
  • M. S. Pegorari
    • 1
  • N. L. Oliveira dos Santos
    • 1
  • C. de Fátima Ribeiro Silva
    • 1
  • R. L. Monteiro
    • 1
  • A. P. Matos
    • 1
  • M. Jamami
    • 2
  1. 1.Universidade Federal do AmapaMacapáBrazil
  2. 2.Universidade Federal de Sao CarlosSao CarlosBrazil

Personalised recommendations