The journal of nutrition, health & aging

, Volume 22, Issue 9, pp 1112–1114 | Cite as

Insufficient Protein Intake is Highly Prevalent among Physically Active Elderly

  • D. S. M. ten Haaf
  • M. F. de Regt
  • M. Visser
  • B. J. M. Witteman
  • J. H. M. de Vries
  • T. M. H. Eijsvogels
  • Maria T. E. HopmanEmail author



Sufficient protein intake and habitual physical activity are key factors in the prevention and treatment of sarcopenia. In the present study, we assessed habitual dietary protein intake and the contribution of animal proteins in male versus female physically active elderly and identified determinants of protein intake.


a cross-sectional study.


the study was performed within the Nijmegen Exercise Study.


physically active elderly ≥ 65 yrs.


Physical activity was assessed using the SQUASH questionnaire and expressed in Metabolic Equivalent of Task hours per week (METhr/wk). Dietary protein intake was determined using a validated food frequency questionnaire (FFQ). Multivariate linear regression analysis was used to determine whether age, sex, educational level, smoking, alcohol intake and physical activity were associated with protein intake (g/kg/d).


A total of 910 participants (70±4 yrs, 70% male) were included and reported a habitual physical activity level of 85.0±53.5 METhr/wk. Protein intake was 1.1±0.3 g/kg/d with 57% animal-based proteins for males, and 1.2±0.3 g/kg/d with 59% animalbased proteins for females (both P<0.05). In total, 16%, 42% and 67% of the male elderly and 10%, 34% and 56% of the female elderly did not meet the recommended protein intake of 0.8, 1.0 and 1.2 g/kg/d, respectively. Female sex (β=0.055, P=0.036) and more physical activity (β=0.001, P=0.001) were associated with a higher daily protein intake (g/kg/d).


The majority of physically active elderly and in particular males (i.e. 67%) does not reach a protein intake of 1.2 g/kg/d, which may offset the health benefits of an active lifestyle on muscle synthesis and prevention of sarcopenia. Intervention studies are warranted to assess whether protein supplementation may enhance muscle mass and strength in physically active elderly.

Key words

Protein physical activity elderly active ageing sarcopenia 


  1. 1.
    Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12(1):86–90. doi: 10.1097/MCO.0b013e32831cef8bCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. The American journal of clinical nutrition. 2008;87(1):150–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Campbell WW, Trappe TA, Wolfe RR, Evans WJ. The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. The journals of gerontology Series A, Biological sciences and medical sciences. 2001;56(6):M373–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Volpi E, Campbell WW, Dwyer JT, Johnson MA, Jensen GL, Morley JE, et al. Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? The journals of gerontology Series A, Biological sciences and medical sciences. 2013;68(6):677–81. doi: 10.1093/gerona/gls229CrossRefPubMedGoogle Scholar
  5. 5.
    (World Health Organization. Protein and amino acid requirements in human nutrition: Report of a joint WHO/FAO/UNU expert consultation. Geneva:WHO Press; 2007. Report 935.).Google Scholar
  6. 6.
    Gaffney-Stomberg E, Insogna KL, Rodriguez NR, Kerstetter JE. Increasing dietary protein requirements in elderly people for optimal muscle and bone health. Journal of the American Geriatrics Society. 2009;57(6):1073–9. doi: 10.1111/j.1532-5415.2009.02285.xCrossRefPubMedGoogle Scholar
  7. 7.
    Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. Journal of the American Medical Directors Association. 2013;14(8):542–59. doi: 10.1016/j.jamda.2013.05.021CrossRefPubMedGoogle Scholar
  8. 8.
    Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clinical nutrition. 2014;33(6):929–36. doi: 10.1016/j. clnu.2014.04.007CrossRefPubMedGoogle Scholar
  9. 9.
    Maessen MF, Verbeek AL, Bakker EA, Thompson PD, Hopman MT, Eijsvogels TM. Lifelong Exercise Patterns and Cardiovascular Health. Mayo Clin Proc. 2016;91(6):745–54. doi: 10.1016/j.mayocp.2016.02.028CrossRefPubMedGoogle Scholar
  10. 10.
    Wendel-Vos GC, Schuit AJ, Saris WH, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. Journal of clinical epidemiology. 2003;56(12):1163–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Siebelink E, Geelen A, de Vries JH. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. The British journal of nutrition. 2011;106(2):274–81. doi: 10.1017/S0007114511000067CrossRefPubMedGoogle Scholar
  12. 12.
    Streppel MT, de Vries JH, Meijboom S, Beekman M, de Craen AJ, Slagboom PE, et al. Relative validity of the food frequency questionnaire used to assess dietary intake in the Leiden Longevity Study. Nutrition journal. 2013;12:75. doi: 10.1186/1475-2891-12-75CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34. doi: 10.1249/mss.0b013e3180616b27CrossRefPubMedGoogle Scholar
  14. 14.
    Black AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity. 2000;24(9):1119–30.Google Scholar
  15. 15.
    Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, et al. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr. 1991;45(12):569–81.PubMedGoogle Scholar
  16. 16.
    Tieland M, Borgonjen-Van den Berg KJ, Van Loon LJ, de Groot LC. Dietary Protein Intake in Dutch Elderly People: A Focus on Protein Sources. Nutrients. 2015;7(12):9697–706. doi: 10.3390/nu7125496CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bechshoeft R, Dideriksen KJ, Reitelseder S, Scheike T, Kjaer M, Holm L. The anabolic potential of dietary protein intake on skeletal muscle is prolonged by prior light-load exercise. Clinical nutrition. 2013;32(2):236–44. doi: 10.1016/j. clnu.2012.06.015CrossRefPubMedGoogle Scholar
  18. 18.
    Timmerman KL, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Jennings K, et al. A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. The American journal of clinical nutrition. 2012;95(6):1403–12. doi: 10.3945/ajcn.111.020800CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Phillips SM. A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med. 2014;44 Suppl 1:S71–7. doi: 10.1007/s40279-014-0152-3CrossRefPubMedGoogle Scholar
  20. 20.
    van Vliet S, Burd NA, van Loon LJ. The Skeletal Muscle Anabolic Response to Plant-versus Animal-Based Protein Consumption. J Nutr. 2015;145(9):1981–91. doi: 10.3945/jn.114.204305CrossRefPubMedGoogle Scholar
  21. 21.
    Hoffman JR, Falvo MJ. Protein -Which is Best? J Sports Sci Med. 2004;3(3):118–30.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gallagher D, Heymsfield SB. Muscle distribution: variations with body weight, gender, and age. Appl Radiat Isot. 1998;49(5-6):733–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Biro G, Hulshof KF, Ovesen L, Amorim Cruz JA, Group E. Selection of methodology to assess food intake. Eur J Clin Nutr. 2002;56 Suppl 2:S25–32. doi: 10.1038/sj.ejcn.1601426CrossRefPubMedGoogle Scholar
  24. 24.
    Trijsburg L, de Vries JH, Boshuizen HC, Hulshof PJ, Hollman PC, van ‘t Veer P, et al. Comparison of duplicate portion and 24 h recall as reference methods for validating a FFQ using urinary markers as the estimate of true intake. The British journal of nutrition. 2015;114(8):1304–12. doi: 10.1017/S0007114515002871CrossRefPubMedGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • D. S. M. ten Haaf
    • 1
  • M. F. de Regt
    • 2
    • 3
  • M. Visser
    • 2
  • B. J. M. Witteman
    • 2
    • 3
  • J. H. M. de Vries
    • 3
  • T. M. H. Eijsvogels
    • 1
  • Maria T. E. Hopman
    • 1
    • 3
    • 4
    Email author
  1. 1.Radboud Institute for Health Sciences, Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
  2. 2.Gelderse Vallei HospitalEdeThe Netherlands
  3. 3.Division of Human NutritionWageningen UniversityWageningenThe Netherlands
  4. 4.Department of Physiology (392)Radboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations