Advertisement

The journal of nutrition, health & aging

, Volume 20, Issue 10, pp 1010–1023 | Cite as

Nutritional interventions that slow the age-associated decline in renal function in a canine geriatric model for elderly humans

  • Jean A. Hall
  • M. Yerramilli
  • E. Obare
  • M. Yerramilli
  • K. S. Panickar
  • G. Bobe
  • D. E. Jewell
Article

Abstract

Objective

To determine the effects of feeding traditional and renal protective foods (RPF) supplemented with functional food bioactives on glomerular filtration rate (GFR), lean body percent (LB%), and selected circulating biomarker and metabolite concentrations in a geriatric dog model.

Design

Randomized block design and cross-sectional study. Setting: Hill’s Pet Nutrition, Inc. dog colony.

Participants

Eighty-one geriatric dogs (mean age, 10.4; range, 7.9-14.2 years) and 30 mature-adult dogs (mean age, 5.0; range, 3.3-6.9 years).

Intervention

Geriatric dogs were fed one of three foods (n = 27 per group) for 6 months: a traditional RPF (control) that was energy dense and mildly protein-restricted, or control food supplemented with increasing amounts of functional food bioactives: fish oil, lipoic acid, fruits and vegetables, and higher quality protein sources [functional foods one (FF1) and two (FF2)]. Geriatric dogs were compared before and after the feeding trial with mature adult dogs.

Measurements

Renal function was assessed by GFR, LB% was determined by dual energy x-ray absorptiometry, and circulating biomarkers and metabolites were measured in blood.

Results

Before the feeding trial, GFR (+28.2%), LB% (+18.6%), and serum total protein (+10.0%) were higher in mature versus healthy geriatric dogs (all P<0.001). Geriatric dogs consuming all three foods increased (P<0.001) GFR over time; group averages ranged from 13.0–16.9%. Dogs fed the highest supplemented level of bioactives (FF2) had lower (P<0.001) symmetric dimethylarginine (SDMA) concentrations (-14.3%). Feeding functional foods did not alter body weight, but increased (P<0.001) serum protein concentration (+6.7%).

Conclusion

Supplementation with functional food bioactives can temporarily reverse the age-associated decline in renal function and serum total protein.

Key words

Dog glomerular filtration rate lean body percent renal biomarkers symmetric dimethylarginine 

Abbreviations

AA

amino acid

aLA

alpha-linolenic acid

ADMA

asymmetric dimethylarginine

AOAC

Association of Analytical Communities

ARA

arachidonic acid

BUN

blood urea nitrogen

BW

body weight

CKD

chronic kidney disease

Cr

creatinine

DHA

docosahexaenoic acid

DPA

docospentaenoic acid

EPA

eicosapentaenoic acid

FF1

functional food one

FF2

functional food two

FA

fatty acid

GFR

glomerular filtration rate

LA

linoleic acid

LB%

lean body percent

LSM

least squares mean

MMA

monomethylarginine

PUFA

polyunsaturated fatty acids

RPF

renal-protective foods

SDMA

symmetric dimethylarginine

References

  1. 1.
    Brown SA. Renal pathophysiology: Lessons learned from the canine remnant kidney model. J Vet Emerg Crit Care (San Antonio) 2013;23:115–21.CrossRefGoogle Scholar
  2. 2.
    Benali SL, Lees GE, Castagnaro M, Aresu L. Epithelial mesenchymal transition in the progression of renal disease in dogs. Histol Histopathol 2014;29:1409–14.PubMedGoogle Scholar
  3. 3.
    Grossman RC. Experimental models of renal disease and the cardiovascular system. Open Cardiovasc Med 2010;4:257–64.CrossRefGoogle Scholar
  4. 4.
    Becker GJ, Hewitson TD. Animal models of chronic kidney disease: Useful but not perfect. Nephrol Dial Transplant 2013;28:2432–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, Visvanathan R, Volpi E, Boirie Y. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 2013;14:542–59.CrossRefPubMedGoogle Scholar
  6. 6.
    Forrester S, Adams L, Allen T. Chronic kidney disease. In: Hand M, Thatcher C, Remillard R, Roudebush P, Novotny B, editors. Small Animal Clinical Nutrtion. 5th ed. Topeka, KS: Mark Morris Institute; 2010. p. 765–810.Google Scholar
  7. 7.
    Polzin DJ. Evidence-based step-wise approach to managing chronic kidney disease in dogs and cats. J Vet Emerg Crit Care (San Antonio) 2013;23:205–15.CrossRefGoogle Scholar
  8. 8.
    Bartges JW. Chronic kidney disease in dogs and cats. Vet Clin North Am Small Anim Pract 2012;42:669–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Brown SA. Oxidative stress and chronic kidney disease. Vet Clin North Am Small Anim Pract 2008;38:157–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Jacob F, Polzin DJ, Osborne CA, Allen TA, Kirk CA, Neaton JD, Lekcharoensuk C, Swanson LL. Clinical evaluation of dietary modification for treatment of spontaneous chronic renal failure in dogs. J Am Vet Med Assoc 2002;220:1163–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Hall JA, Yerramilli M, Obare E, Yerramilli M, Melendez LD, Jewell DE. Relationship between lean body mass and serum renal biomarkers in healthy dogs. J Vet Intern Med 2015;29:808–14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hall JA, Jewell DE. Feeding healthy beagles medium-chain triglycerides, fish oil, and carnitine offsets age-related changes in serum fatty acids and carnitine metabolites. PLoS One 2012;7:e49510.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rentko V, Nabity M, Yerramilli M, Obare E, Yerramilli M, Aguiar J, Relford R. Determination of serum symmetric dimethylarginine reference limit in clinically healthy dogs. J Vet Intern Med 2013;27:750.Google Scholar
  14. 14.
    Roush JK, Dodd CE, Fritsch DA, Allen TA, Jewell DE, Schoenherr WD, Richardson DC, Leventhal PS, Hahn KA. Multicenter veterinary practice assessment of the effects of omega-3 fatty acids on osteoarthritis in dogs. J Am Vet Med Assoc 2010;236:59–66.CrossRefPubMedGoogle Scholar
  15. 15.
    Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497–509.PubMedGoogle Scholar
  16. 16.
    Wang XL, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, Lerman LO, Rule AD. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int 2014;85:677–85.CrossRefPubMedGoogle Scholar
  17. 17.
    Hall JA, Yerramilli M, Obare E, Yu S, Jewell DE. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein foods enriched with fish oil, L-carnitine, and medium-chain triglycerides. Vet J 2014;202:588–96.CrossRefPubMedGoogle Scholar
  18. 18.
    Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell 2005;18:263–72.CrossRefPubMedGoogle Scholar
  19. 19.
    Schwedhelm E, Boger RH. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol 2011;7:275–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Kielstein JT, Boger RH, Bode-Boger SM, Frolich JC, Haller H, Ritz E, Fliser D. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol 2002;13:170–6.PubMedGoogle Scholar
  21. 21.
    Von Hendy-Willson VE, Pressler BM. An overview of glomerular filtration rate testing in dogs and cats. Vet J 2011;188:156–65.CrossRefGoogle Scholar
  22. 22.
    Nguyen TV, Goldfarb DS. The older adult patient and kidney function. Consult Pharm 2012;27:431–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Kielstein JT, Salpeter SR, Bode-Boeger SM, Cooke JP, Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function—a meta-analysis. Nephrol Dial Transplant 2006;21:2446–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Hall JA, Yerramilli M, Obare E, Jewell DE. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J Vet Intern Med 2014;28:1676–83.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Payto D, El-Khoury JM, Bunch D, Wang S. SDMA outperforms serum creatininebased equations in estimating kidney function compared with measured GFR. Clin Chem 2014;60:S26.Google Scholar
  26. 26.
    Lin JL, Fung TT, Hu FB, Curhan GC. Association of dietary patterns with albuminuria and kidney function decline in older white women: A subgroup analysis from the Nurses’ Health Study. Am J Kidney Dis 2011;57:245–54.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vlassara H, Torreggiani M, Post JB, Zheng F, Uribarri J, Striker GE. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int Suppl 2009:S3–11.Google Scholar
  28. 28.
    Jain N, Reilly RF. Effects of dietary interventions on incidence and progression of CKD. Nat Rev Nephrol 2014;10:712–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Xu H, Sjogren P, Arnlov J, Banerjee T, Cederholm T, Riserus U, Lindholm B, Lind L, Carrero JJ. A proinflammatory diet is associated with systemic inflammation and reduced kidney function in elderly adults. J Nutr 2015;145:729–35.CrossRefPubMedGoogle Scholar
  30. 30.
    Calder PC, Yaqoob P. Understanding omega-3 polyunsaturated fatty acids. Postgrad Med 2009;121:148–57.CrossRefPubMedGoogle Scholar
  31. 31.
    Hall JA, Brockman JA, Jewell DE. Dietary fish oil alters the lysophospholipid metabolomic profile and decreases urinary 11-dehydro thromboxane B(2) concentration in healthy Beagles. Vet Immunol Immunopathol 2011;144:355–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Brown SA, Brown CA, Crowell WA, Barsanti JA, Allen T, Cowell C, Finco DR. Beneficial effects of chronic administration of dietary omega-3 polyunsaturated fatty acids in dogs with renal insufficiency. J Lab Clin Med 1998;131:447–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Brown SA, Brown CA, Crowell WA, Barsanti JA, Kang CW, Allen T, Cowell C, Finco DR. Effects of dietary polyunsaturated fatty acid supplementation in early renal insufficiency in dogs. J Lab Clin Med 2000;135:275–86.CrossRefPubMedGoogle Scholar
  34. 34.
    Miller ER, Juraschek SP, Appel LJ, Madala M, Anderson CAM, Bleys J, Guallar E. The effect of n-3 long-chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: Meta-analysis of clinical trials. Am J Clin Nutr 2009;89:1937–45.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Takahashi N, Morimoto S, Okigaki M, Seo M, Someya K, Morita T, Matsubara H, Sugiura T, Iwasaka T. Decreased plasma level of vitamin C in chronic kidney disease: Comparison between diabetic and non-diabetic patients. Nephrol Dial Transpl 2011;26:1252–57.CrossRefGoogle Scholar
  36. 36.
    Fletcher AE, Breeze E, Shetty PS. Antioxidant vitamins and mortality in older persons: Findings from the nutrition add-on study to the Medical Research Council Trial of Assessment and Management of Older People in the Community. Am J Clin Nutr 2003;78:999–1010.PubMedGoogle Scholar
  37. 37.
    Karamouzis I, Sarafidis PA, Karamouzis M, Iliadis S, Haidich AB, Sioulis A, Triantos A, Vavatsi-Christaki N, Grekas DM. Increase in oxidative stress but not in antioxidant capacity with advancing stages of chronic kidney disease. Am J Nephrol 2008;28:397–404.CrossRefPubMedGoogle Scholar
  38. 38.
    Boudouris G, Verginadis, II, Simos YV, Zouridakis A, Ragos V, Karkabounas S, Evangelou AM. Oxidative stress in patients treated with continuous ambulatory peritoneal dialysis (CAPD) and the significant role of vitamin C and E supplementation. Int Urol Nephrol 2013;45:1137–44.CrossRefPubMedGoogle Scholar
  39. 39.
    Moffitt TA, Garrett PJ, Hannon-Fletcher MP. Micronutrient supplementation in maintenance haemodialysis patients enhances activity of antioxidant enzymes. J Nephrol 2013;26:403–11.CrossRefPubMedGoogle Scholar
  40. 40.
    Reckelhoff JF, Kanji V, Racusen LC, Schmidt AM, Yan SD, Marrow J, Roberts LJ, Salahudeen AK. Vitamin E ameliorates enhanced renal lipid peroxidation and accumulation of F2-isoprostanes in aging kidneys. Am J Physiol 1998;274:R767–74.PubMedGoogle Scholar
  41. 41.
    Kadkhodaee M, Khastar H, Faghihi M, Ghaznavi R, Zahmatkesh M. Effects of co-supplementation of vitamins E and C on gentamicin-induced nephrotoxicity in rat. Exp Physiol 2005;90:571–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Chade AR, Rodriguez-Porcel M, Herrmann J, Zhu X, Grande JP, Napoli C, Lerman A, Lerman LO. Antioxidant intervention blunts renal injury in experimental renovascular disease. J Am Soc Nephrol 2004;15:958–66.CrossRefPubMedGoogle Scholar
  43. 43.
    Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, antioxidant therapies and chronic kidney disease. Nephrology (Carlton) 2012;17:311–21.CrossRefGoogle Scholar
  44. 44.
    Sung CC, Hsu YC, Chen CC, Lin YF, Wu CC. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid Med Cell Longev 2013;2013:301982.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ringseis R, Keller J, Eder K. Mechanisms underlying the anti-wasting effect of l-carnitine supplementation under pathologic conditions: Evidence from experimental and clinical studies. Eur J Nutr 2013;52:1421–42.CrossRefPubMedGoogle Scholar
  46. 46.
    Juliet PA, Balasubramaniam D, Balasubramaniam N, Panneerselvam C. Carnitine: A neuromodulator in aged rats. J Gerontol A Biol Sci Med Sci 2003;58:970–4.CrossRefPubMedGoogle Scholar
  47. 47.
    Thangasamy T, Subathra M, Sittadjody S, Jeyakumar P, Joyee AG, Mendoza E, Chinnakkanu P. Role of L-carnitine in the modulation of immune response in aged rats. Clin Chim Acta 2008;389:19–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Owen L, Sunram-Lea SI. Metabolic agents that enhance ATP can improve cognitive functioning: A review of the evidence for glucose, oxygen, pyruvate, creatine, and L-carnitine. Nutrients 2011;3:735–55.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sahebkar A. Effect of L-carnitine supplementation on circulating c-reactive protein levels: A systematic review and meta-analysis. J Med Biochem 2015;34:151–59.CrossRefGoogle Scholar
  50. 50.
    Stadler DD, Chenard CA, Rebouche CJ. Effect of dietary macronutrient content on carnitine excretion and efficiency of carnitine reabsorption. Am J Clin Nutr 1993;58:868–72.PubMedGoogle Scholar
  51. 51.
    Boonsanit D, Kanchanapangka S, Buranakarl C. L-carnitine ameliorates doxorubicininduced nephrotic syndrome in rats. Nephrology (Carlton) 2006;11:313–20.CrossRefGoogle Scholar
  52. 52.
    Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 2014;10:504–16.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Visser M, Kritchevsky SB, Newman AB, Goodpaster BH, Tylavsky FA, Nevitt MC, Harris TB, Composition HAB. Lower serum albumin concentration and change in muscle mass: The Health, Aging and Body Composition Study. Am J Clin Nutr 2005;82:531–37.PubMedGoogle Scholar
  54. 54.
    Orwoll ES, Weigel RM, Oviatt SK, Meier DE, Mcclung MR. Serum-protein concentrations and bone-mineral content in aging normal men. Am J Clin Nutr 1987;46:614–21.PubMedGoogle Scholar
  55. 55.
    Nagabhushan VS, Narasinga Rao BS. Studies on 3-methylhistidine metabolism in children with protein-energy malnutrition. Am J Clin Nutr 1978;31:1322–7.PubMedGoogle Scholar
  56. 56.
    Myint T, Fraser GE, Lindsted KD, Knutsen SF, Hubbard RW, Bennett HW. Urinary 1-methylhistidine is a marker of meat consumption in Black and in White California Seventh-day Adventists. Am J Epidemiol 2000;152:752–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Tojo Y, Hamase K, Nakata M, Morikawa A, Mita M, Ashida Y, Lindner W, Zaitsu K. Automated and simultaneous two-dimensional micro-high-performance liquid chromatographic determination of proline and hydroxyproline enantiomers in mammals. J Chromatogr Analyt Technol Biomed Life Sci 2008;875:174–9.CrossRefGoogle Scholar
  58. 58.
    Koike K, Li Y, Seo M, Sakurada I, Tezuka K, Uchikura K. Free 4-hydroxyproline content in serum of bedridden aged people is elevated due to fracture. Biol Pharm Bull 2000;23:101–3.CrossRefPubMedGoogle Scholar
  59. 59.
    Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim Biophys Acta 2009;1790:1149–60.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2016

Authors and Affiliations

  • Jean A. Hall
    • 1
  • M. Yerramilli
    • 2
  • E. Obare
    • 2
  • M. Yerramilli
    • 2
  • K. S. Panickar
    • 3
  • G. Bobe
    • 4
    • 5
  • D. E. Jewell
    • 3
  1. 1.Department of Biomedical Sciences, College of Veterinary MedicineOregon State UniversityCorvallisUSA
  2. 2.IDEXX Laboratories, Inc.WestbrookUSA
  3. 3.Pet Nutrition CenterHill’s Pet Nutrition, Inc.TopekaUSA
  4. 4.Department of Animal and Rangeland Sciences, College of Agricultural SciencesOregon State UniversityCorvallisUSA
  5. 5.Linus Pauling InstituteOregon State UniversityCorvallisUSA

Personalised recommendations