Advertisement

The journal of nutrition, health & aging

, Volume 20, Issue 5, pp 546–552 | Cite as

Consumption of chilies, but not sweet peppers, is positively related to handgrip strength in an adult population

  • H. Wu
  • M. Wei
  • Q. Zhang
  • H. Du
  • Y. Xia
  • L. Liu
  • C. Wang
  • H. Shi
  • X. Guo
  • X. Liu
  • C. Li
  • X. Bao
  • Q. Su
  • Y. Gu
  • L. Fang
  • H. Yang
  • F. Yu
  • S. Sun
  • X. Wang
  • M. Zhou
  • Q. Jia
  • H. Zhao
  • K. Song
  • Kaijun NiuEmail author
Article

Abstract

Background

Chili consumption may have a beneficial effect on muscle strength in the general population. The aim of this study was to investigate the relationship between frequency of chili consumption and handgrip strength in adults.

Design

Population-based cross-sectional study.

Setting

This study used baseline data from the Tianjin Chronic Low-grade Systemic Inflammation and Health Cohort Study.

Participants

A total of 3 717 subjects were recruited to the study. Frequency of chili consumption during the previous month was assessed using a valid self-administered food frequency questionnaire. Analysis of covariance was used to examine the relationship between muscle strength and frequency of chili consumption. Handgrip strength was measured using a handheld digital dynamometer.

Results

After adjustment for potential confounding factors, significant relationships were observed between different categories of chili consumption and handgrip strength in males, the means (95% confidence interval) for handgrip strength across chili consumption categories were 44.7 (42.1, 47.2) for < one time/week; 45.5 (42.9, 48.1) for one time/week; and 45.8 (43.3, 48.4) for ≥ 2-3 times/week (P for trend < 0.01). Similar results were not observed with sweet pepper consumption.

Conclusions

This study reveals a positive correlation between frequency of chili consumption and muscle strength in adult males. Further studies are necessary in order to determine whether there is a causal relationship between chili consumption frequency and muscle strength.

Key words

Muscle strength chili consumption frequency capsaicin 

References

  1. 1.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and ageing 2010;39:412–423. doi: 10.1093/ageing/afq034 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, Bernabei R, Onder G. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age and ageing 2013;42:203–209. doi: 10.1093/ageing/afs194 CrossRefPubMedGoogle Scholar
  3. 3.
    Gomez-Cabello A, Carnicero JA, Alonso-Bouzon C, Tresguerres JA, Alfaro-Acha A, Ara I, Rodriguez-Manas L, Garcia-Garcia FJ. Age and gender, two key factors in the associations between physical activity and strength during the ageing process. Maturitas 2014;78:106–112. doi: 10.1016/j.maturitas.2014.03.007 CrossRefPubMedGoogle Scholar
  4. 4.
    Kilgour RD, Vigano A, Trutschnigg B, Lucar E, Borod M, Morais JA. Handgrip strength predicts survival and is associated with markers of clinical and functional outcomes in advanced cancer patients. Supportive care in cancer: official journal of the Multinational Association of Supportive Care in Cancer 2013;21:3261–3270. doi: 10.1007/s00520-013-1894-4 CrossRefGoogle Scholar
  5. 5.
    Yang EJ, Lim S, Lim JY, Kim KW, Jang HC, Paik NJ. Association between muscle strength and metabolic syndrome in older Korean men and women: the Korean Longitudinal Study on Health and Aging. Metabolism: clinical and experimental 2012;61:317–324. doi: 10.1016/j.metabol.2011.07.005 CrossRefGoogle Scholar
  6. 6.
    Webb AR, Newman LA, Taylor M, Keogh JB. Hand grip dynamometry as a predictor of postoperative complications reappraisal using age standardized grip strengths. JPEN Journal of parenteral and enteral nutrition 1989;13:30–33CrossRefPubMedGoogle Scholar
  7. 7.
    Stenholm S, Mehta NK, Elo IT, Heliovaara M, Koskinen S, Aromaa A. Obesity and muscle strength as long-term determinants of all-cause mortality—a 33-year followup of the Mini-Finland Health Examination Survey. International journal of obesity 2014;38:1126–1132. doi: 10.1038/ijo.2013.214 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Winett RA, Carpinelli RN. Potential health-related benefits of resistance training. Preventive medicine 2001;33:503–513. doi: 10.1006/pmed.2001.0909 CrossRefPubMedGoogle Scholar
  9. 9.
    Norman K, Stobaus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clinical nutrition 2011;30:135–142. doi: 10.1016/j.clnu.2010.09.010 CrossRefPubMedGoogle Scholar
  10. 10.
    Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. International journal of epidemiology 2007;36:228–235. doi: 10.1093/ije/dyl224 CrossRefPubMedGoogle Scholar
  11. 11.
    Ling CH, Taekema D, de Craen AJ, Gussekloo J, Westendorp RG, Maier AB. Handgrip strength and mortality in the oldest old population: the Leiden 85-plus study. CMAJ: Canadian Medical Association journal = journal de l’Association medicale canadienne 2010;182:429–435. doi: 10.1503/cmaj.091278 CrossRefPubMedGoogle Scholar
  12. 12.
    Wind AE, Takken T, Helders PJ, Engelbert RH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? European journal of pediatrics 2010;169:281–287. doi: 10.1007/s00431-009-1010-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Komar B, Schwingshackl L, Hoffmann G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. The journal of nutrition, health & aging 2015;19:437–446. doi: 10.1007/s12603-014-0559-4 CrossRefGoogle Scholar
  14. 14.
    Karelis AD, Messier V, Suppere C, Briand P, Rabasa-Lhoret R. Effect of cysteinerich whey protein (immunocal(R)) supplementation in combination with resistance training on muscle strength and lean body mass in non-frail elderly subjects: a randomized, double-blind controlled study. The journal of nutrition, health & aging 2015;19:531–536. doi: 10.1007/s12603-015-0442-y CrossRefGoogle Scholar
  15. 15.
    Frydas S, Varvara G, Murmura G, Saggini A, Caraffa A, Antinolfi P, Tete S, Tripodi D, Conti F, Cianchetti E, Toniato E, Rosati M, Speranza L, Pantalone A, Saggini R, Di Tommaso LM, Theoharides TC, Conti P, Pandolfi F. Impact of capsaicin on mast cell inflammation. International journal of immunopathology and pharmacology 2013;26:597–600PubMedGoogle Scholar
  16. 16.
    Ahuja KD, Robertson IK, Geraghty DP, Ball MJ. Effects of chili consumption on postprandial glucose, insulin, and energy metabolism. The American journal of clinical nutrition 2006;84:63–69PubMedGoogle Scholar
  17. 17.
    Srinivasan MR, Chandrasekhara N. Comparative influence of vanillin & capsaicin on liver & blood lipids in the rat. The Indian journal of medical research 1992;96:133–135PubMedGoogle Scholar
  18. 18.
    Yoshioka M, St-Pierre S, Drapeau V, Dionne I, Doucet E, Suzuki M, Tremblay A. Effects of red pepper on appetite and energy intake. The British journal of nutrition 1999;82:115–123PubMedGoogle Scholar
  19. 19.
    Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K. Capsaicin-induced betaadrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine 1986;183:250–256. doi: 10.3181/00379727-183-42414 CrossRefGoogle Scholar
  20. 20.
    Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nature medicine 2013;19:101–106. doi: 10.1038/nm.3019 CrossRefPubMedGoogle Scholar
  21. 21.
    Song K, Du H, Zhang Q, Wang C, Guo Y, Wu H, Liu L, Jia Q, Wang X, Shi H, Sun S, Niu K. Serum immunoglobulin M concentration is positively related to metabolic syndrome in an adult population: Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) Cohort Study. PloS one 2014;9:e88701. doi: 10.1371/journal.pone.0088701 CrossRefGoogle Scholar
  22. 22.
    Sun S, Wu H, Zhang Q, Wang C, Guo Y, Du H, Liu L, Jia Q, Wang X, Song K, Niu K. Subnormal peripheral blood leukocyte counts are related to the lowest prevalence and incidence of metabolic syndrome: Tianjin chronic low-grade systemic inflammation and health cohort study. Mediators of inflammation 2014:412386. doi: 10.1155/2014/412386 Google Scholar
  23. 23.
    Yang Y, Wang G, Pan X. Chinese food composition tables, Peking University Medical Press, Beijing, 2009.Google Scholar
  24. 24.
    Gomez-Cabello A, Carnicero JA, Alonso-Bouzon C, Tresguerres JA, Alfaro-Acha A, Ara I, Rodriguez-Manas L, Garcia-Garcia FJ. Age and gender, two key factors in the associations between physical activity and strength during the ageing process. Maturitas. doi: 10.1016/j.maturitas.2014.03.007
  25. 25.
    Hardy R, Cooper R, Aihie Sayer A, Ben-Shlomo Y, Cooper C, Deary IJ, Demakakos P, Gallacher J, Martin RM, McNeill G, Starr JM, Steptoe A, Syddall H, Kuh D, team HAs. Body mass index, muscle strength and physical performance in older adults from eight cohort studies: the HALCyon programme. PloS one 2013;8:e56483. doi: 10.1371/journal.pone.0056483 CrossRefGoogle Scholar
  26. 26.
    Lee JS, Auyeung TW, Kwok T, Lau EM, Leung PC, Woo J. Associated factors and health impact of sarcopenia in older chinese men and women: a cross-sectional study. Gerontology 2007;53:404–410. doi: 10.1159/000107355 CrossRefPubMedGoogle Scholar
  27. 27.
    Schalk BW, Deeg DJ, Penninx BW, Bouter LM, Visser M. Serum albumin and muscle strength: a longitudinal study in older men and women. Journal of the American Geriatrics Society 2005;53:1331–1338. doi: 10.1111/j.1532-5415.2005.53417.x CrossRefPubMedGoogle Scholar
  28. 28.
    Sayer AA, Syddall HE, Dennison EM, Martin HJ, Phillips DI, Cooper C, Byrne CD, Hertfordshire C. Grip strength and the metabolic syndrome: findings from the Hertfordshire Cohort Study. QJM: monthly journal of the Association of Physicians 2007;100:707–713. doi: 10.1093/qjmed/hcm095 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ruiz JR, Sui X, Lobelo F, Lee DC, Morrow JR, Jr., Jackson AW, Hebert JR, Matthews CE, Sjostrom M, Blair SN. Muscular strength and adiposity as predictors of adulthood cancer mortality in men. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2009;18:1468–1476. doi: 10.1158/1055-9965.EPI-08-1075 CrossRefGoogle Scholar
  30. 30.
    Silventoinen K, Magnusson PK, Tynelius P, Batty GD, Rasmussen F. Association of body size and muscle strength with incidence of coronary heart disease and cerebrovascular diseases: a population-based cohort study of one million Swedish men. International journal of epidemiology 2009;38:110–118. doi: 10.1093/ije/dyn231 CrossRefPubMedGoogle Scholar
  31. 31.
    Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ). 2005, http://www.ipaq.ki.se/scoring.pdf. Accessed 1 October 2014
  32. 32.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, Jr., International Diabetes Federation Task Force on E, Prevention, Hational Heart L, Blood I, American Heart A, World Heart F, International Atherosclerosis S, International Association for the Study of O. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644 CrossRefPubMedGoogle Scholar
  33. 33.
    Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annual review of neuroscience 2001;24:487–517. doi: 10.1146/annurev.neuro.24.1.487 CrossRefPubMedGoogle Scholar
  34. 34.
    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature cell biology 2001;3:1014–1019. doi: 10.1038/ncb1101-1014 CrossRefPubMedGoogle Scholar
  35. 35.
    Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y, Chen J, Hornberger TA. A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Molecular biology of the cell 2010;21:3258–3268. doi: 10.1091/mbc.E10-05-0454 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xin H, Tanaka H, Yamaguchi M, Takemori S, Nakamura A, Kohama K. Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle. Biochemical and biophysical research communications 2005;332:756–762. doi: 10.1016/j.bbrc.2005.05.016 CrossRefPubMedGoogle Scholar
  37. 37.
    Alawi K, Keeble J. The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation. Pharmacology & therapeutics 2010;125:181–195. doi: 10.1016/j.pharmthera.2009.10.005 CrossRefGoogle Scholar
  38. 38.
    Pinter E, Helyes Z, Szolcsanyi J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacology & therapeutics 2006;112:440–456. doi: 10.1016/j.pharmthera.2006.04.010 CrossRefGoogle Scholar
  39. 39.
    Haren MT, Malmstrom TK, Miller DK, Patrick P, Perry HM, 3rd, Herning MM, Banks WA, Morley JE. Higher C-reactive protein and soluble tumor necrosis factor receptor levels are associated with poor physical function and disability: a crosssectional analysis of a cohort of late middle-aged African Americans. The journals of gerontology Series A, Biological sciences and medical sciences 2010;65:274–281. doi: 10.1093/gerona/glp148 CrossRefPubMedGoogle Scholar
  40. 40.
    Luo Z, Ma L, Zhao Z, He H, Yang D, Feng X, Ma S, Chen X, Zhu T, Cao T, Liu D, Nilius B, Huang Y, Yan Z, Zhu Z. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1alpha upregulation in mice. Cell research 2012;22:551–564. doi: 10.1038/cr.2011.205 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. The Journal of physiology 2003;546:851–858. doi: 10.1113/jphysiol.2002.034850 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Reinbach HC, Smeets A, Martinussen T, Moller P, Westerterp-Plantenga MS. Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clinical nutrition 2009;28:260–265. doi: 10.1016/j.clnu.2009.01.010 CrossRefPubMedGoogle Scholar
  43. 43.
    Page ST, Amory JK, Bowman FD, Anawalt BD, Matsumoto AM, Bremner WJ, Tenover JL. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. The Journal of clinical endocrinology and metabolism 2005;90:1502–1510. doi: 10.1210/jc.2004-1933 CrossRefPubMedGoogle Scholar
  44. 44.
    Giampaoli S, Ferrucci L, Cecchi F, Lo Noce C, Poce A, Dima F, Santaquilani A, Vescio MF, Menotti A. Hand-grip strength predicts incident disability in nondisabled older men. Age and ageing 1999;28:283–288. doi: 10.1093/ageing/28.3.283 CrossRefPubMedGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2016

Authors and Affiliations

  • H. Wu
    • 1
  • M. Wei
    • 1
  • Q. Zhang
    • 2
  • H. Du
    • 1
  • Y. Xia
    • 1
  • L. Liu
    • 2
  • C. Wang
    • 2
  • H. Shi
    • 2
  • X. Guo
    • 1
  • X. Liu
    • 1
  • C. Li
    • 1
  • X. Bao
    • 1
  • Q. Su
    • 1
  • Y. Gu
    • 1
  • L. Fang
    • 1
  • H. Yang
    • 1
  • F. Yu
    • 1
  • S. Sun
    • 2
  • X. Wang
    • 2
  • M. Zhou
    • 2
  • Q. Jia
    • 2
  • H. Zhao
    • 2
  • K. Song
    • 2
  • Kaijun Niu
    • 1
    • 2
    Email author
  1. 1.Nutritional Epidemiology Institute and School of Public HealthTianjin Medical UniversityTianjinChina
  2. 2.Health Management CentreTianjin Medical University General HospitalTianjinChina

Personalised recommendations