Advertisement

The journal of nutrition, health & aging

, Volume 19, Issue 9, pp 908–912 | Cite as

Vitamin K status is not associated with cognitive decline in middle aged adults

  • E. G. H. M. van den Heuvel
  • N. M. van Schoor
  • C. Vermeer
  • R. M. L. Zwijsen
  • M. den Heijer
  • H. C. ComijsEmail author
Article

Abstract

Objectives

The aim of this study was to examine the association between dephospho-uncarboxylated matrix Gla protein (dp-ucMGP), an indicator of vitamin K status, and cognitive decline, and the modifying role of 25(OH)D.

Design

Longitudinal study with six years follow-up.

Setting

Community based.

Participants

599 participants of the Longitudinal Aging Study Amsterdam (aged 55-65 years).

Measurements

Information processing speed and a composite Z-score by combining three domains of cognition reflecting general cognitive functioning.

Results

Generalized estimating equations (GEE) showed no significant associations between dp-ucMGP and decline in general cognitive functioning. Vitamin D modified the association between dp-ucMGP and speed of information processing (p<0.05). In the group with a 25(OH)D concentration > 50 nmol/l, the highest tertile of dp-ucMGP (>406 pmol/l), which corresponds to lower vitamin K levels, was associated with 1.5 higher score on information processing speed (p=0.023) as compared to the lowest tertile of dp-ucMGP.

Conclusion

In contrast to our hypothesis, a suboptimal vitamin K was not associated with cognitive decline in middle-aged adults.

Keywords

Cognitive decline speed of information processing vitamin K status desphopho-uncarboxylated matrix Gla-protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Presse N, Belleville S, Gaudreau P, Greenwood CE, Kergoat MJ, Morais JA, Payette H, Shatenstein B, Ferland G. Vitamin K status and cognitive function in healthy older adults. Neurobiol Aging 2013; 34: 2777–2783.CrossRefPubMedGoogle Scholar
  2. 2.
    Booth SL, O’Brien-Morse ME, Dallal GE, Davidson KW, Gundberg CM. Response of vitamin K status to different intakes and sources of phylloquinone-rich foods: comparison of younger and older adults. Am J Clin Nutr 1999; 70: 368–377.PubMedGoogle Scholar
  3. 3.
    Cranenburg ECM, Koos R, Schurgers LJ, Magdeleyns EJ, Schoonbrood THM, Landewé RB et al. Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) species. Thromb Haemost 2010; 104: 811–822.CrossRefPubMedGoogle Scholar
  4. 4.
    Dalmeijer GW, Van der Schouw YT, Magdeleyns EJ, Vermeer C, Elias SG, Velthuis BK, de Jong PA, Beulens JW. Circulating species of matrix Gla protein and the risk of vascular calcification in healthy women. Int J Cardiol 2013; 15: 168(6):e168–170.CrossRefGoogle Scholar
  5. 5.
    Van den Heuvel EGHM, Van Schoor NM, Lips P, Magdeleyns EJP, Deeg DJH, Vermeer C, Den Heijer M. Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease. Maturitas 2014; 77: 137–141.CrossRefPubMedGoogle Scholar
  6. 6.
    Comijs HC, Kriegsman DM, Dik MG, Deeg DJ, Jonker C, Stalman WA. Somatic chronic diseases and 6-year change in cognitive functioning among older persons. Arch Gerontol Geriatr 2009; 48: 191–196.CrossRefPubMedGoogle Scholar
  7. 7.
    Farzaneh-Far A, Weissberg PL, Proudfoot D, Shanahan CM. Transcriptional regulation of matrix gla protein. Z Kardiol 2001; 90: 38–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Buell JS, Scott TM, Dawson-Hughes B, Dallal GE, Rosenberg IH, Folstein M, Tucker KL. Vitamin D is associated with cognitive function in elders receiving home health services. J Gerontol A Biol Sci Med Sci 2009; 64: 888–895.CrossRefPubMedGoogle Scholar
  9. 9.
    Breitling LP, Perna L, Müller H, Raum E, Kliegel M, Brenner H. Vitamin D and cognitive functioning in the elderly population in Germany. Exp Gerontol 2012; 47: 122–127.CrossRefPubMedGoogle Scholar
  10. 10.
    Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food: Effect of food matrix on circulating vitamin K concentrations. Haemostasis 2000; 30: 298–307.PubMedGoogle Scholar
  11. 11.
    Shearer MJ, Bach A, Kohlmeier M. Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health. J Nutr 1996; 126: 1181S–1186S.PubMedGoogle Scholar
  12. 12.
    Booth SL, Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr 1998; 128: 785–788.PubMedGoogle Scholar
  13. 13.
    Huisman M, Poppelaars J, van der Horst M, Beekman ATF, Brug J, van Tilburg TG et al. Cohort profile: The longitudinal aging study Amsterdam. Int J Epidemiol 2011; 40: 868–876.CrossRefPubMedGoogle Scholar
  14. 14.
    Denisova NA, Booth SL. Vitamin K and sphingolipid metabolism: evidence to date. Nutr Rev 2005; 63: 111–121.CrossRefPubMedGoogle Scholar
  15. 15.
    Jelicic M, Jonker C, Deeg DJH. Effect of low levels of serum vitamin B-12 and folic acid on cognitive performance in old age: A population-based study. Dev Neuropsychol 2001; 20: 565–571.CrossRefPubMedGoogle Scholar
  16. 16.
    Van den Kommer TN, Dik MG, Comijs HC, Jonker C. Homocysteine and inflammation: Predictors of cognitive decline in older persons? Neurobiol Aging 2010; 31: 1700–1709.CrossRefPubMedGoogle Scholar
  17. 17.
    Savage RD. Alphabet Coding Task 15. Murdoch University, Perth, Western Australia. 1984.Google Scholar
  18. 18.
    Rey A. L’examen clinique en psychologie. Presses Universitaire de France, Paris, France. 1964.Google Scholar
  19. 19.
    Raven JC. Manual for the Coloured Progressive Matrices (revised). NFER-Nelson, Windsor, UK. 1984.Google Scholar
  20. 20.
    Havekes LM, De Knijff P, Beisiegel U, Havinga J, Smit M, Klasen E. A rapid micromethod for apolipoprotein E phenotyping directly in serum. J Lipid Res 1987; 28: 455–463.PubMedGoogle Scholar
  21. 21.
    Twisk JW, de Vente W. Roaming through methodology. XXII. Application of techniques for longitudinal data analysis. Ned Tijdschr Geneeskd 2000; 144: 1680–1683.PubMedGoogle Scholar
  22. 22.
    Carrié I, Bélanger E, Portoukalian J, Rochford J, Ferland G. Lifelong low-phylloquinone intake is associated with cognitive impairments in old rats. J Nutr 2011; 141: 1495–1501.CrossRefPubMedGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2015

Authors and Affiliations

  • E. G. H. M. van den Heuvel
    • 1
    • 2
  • N. M. van Schoor
    • 1
  • C. Vermeer
    • 4
  • R. M. L. Zwijsen
    • 2
  • M. den Heijer
    • 1
    • 3
  • H. C. Comijs
    • 5
    Email author
  1. 1.Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care ResearchVU University Medical CenterAmsterdamThe Netherlands
  2. 2.FrieslandCampinaAmersfoortThe Netherlands
  3. 3.Department of Internal Medicine and EndocrinologyVU University Medical CenterAmsterdamThe Netherlands
  4. 4.BioPartner Center, VitaK BVMaastricht UniversityMaastrichtThe Netherlands
  5. 5.GGZ in Geest/ Department of Psychiatry, EMGO Institute for Health and Care ResearchVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations