Advertisement

The journal of nutrition, health & aging

, Volume 19, Issue 6, pp 628–636 | Cite as

Lean mass appears to be more strongly associated with bone health than fat mass in urban black South African women

  • O. F. SotundeEmail author
  • H. S. Kruger
  • H. H. Wright
  • L. Havemann-Nel
  • I. M. Kruger
  • E. Wentzel-Viljoen
  • A. Kruger
  • M. Tieland
Article

Abstract

Objectives

To examine the association between body composition (fat mass, lean mass and body mass index, BMI) and bone health (bone mineral density, BMD and fracture risk) in urban black South African women.

Design

A cross sectional study examining associations between body composition, dietary intake (food frequency questionnaire), habitual physical activity (Activity energy expenditure (AEE) measured using an accelerometer with combined heart rate monitor and physical activity questionnaire) and bone health (BMD using dual-energy X ray absorptiometry, DXA and fracture risk).

Setting

Urban community dwellers from Ikageng in the North-West Province of South Africa.

Participants

One hundred and eighty nine (189) healthy postmenopausal women aged ≥43 years.

Results

Fat mass and lean mass were significantly associated with BMD and fracture risk when adjusted for potential confounders. However, lean mass and not fat mass remained significantly associated with femoral neck BMD (β = 0.49, p <0.001), spine BMD (β = 0.48, p< 0.0001) and hip BMD (β = 0.59, p< 0.0001). Lean mass was also negatively associated with fracture risk (β = −0.19 p =0.04) when both lean and fat mass were in the same model.

Conclusion

Lean mass and fat mass were positively associated with femoral neck, spine and hip BMDs and negatively associated with fracture risk in urban black South African women. Our finding suggests that increasing lean mass rather than fat mass is beneficial to bone health. Our study emphasises the importance of positive lifestyle changes, intake of calcium from dairy and adequate weight to maintain and improve bone health of postmenopausal women.

Key words

Lean mass fat mass bone mineral density fracture risk African women 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosen CJ, Bouxsein ML. Mechanisms of Disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2006;2:35–43PubMedCrossRefGoogle Scholar
  2. 2.
    Kanis JA, on behalf of the WHO scientific group. Assessment of osteoporosis at the primary health-care level. Technical report. WHO Collaborating Centre, University of Sheffield, UK 2008;1 339Google Scholar
  3. 3.
    WHO: Obesity and overweight http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 15 November 2013
  4. 4.
    Shisana O, Labadarios D, Rehle T, Simbayi L, Zuma K, Dhansay A, et a. South African National Health and Nutrition Examination Survey (SANHANES-1). HSRC Press; Cape Town 2013;136–140Google Scholar
  5. 5.
    Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, McClung M, Hosking D, Yates AJ, Christiansen C. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. J Bone Miner Res 1999;14:1622–1627PubMedCrossRefGoogle Scholar
  6. 6.
    Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 1993;8:567–573PubMedCrossRefGoogle Scholar
  7. 7.
    Asomaning K, Bertone-Johnson E, Nasca PC, Hooven F, Pekow PS. The Association between Body Mass Index and Osteoporosis in Patients Referred for a Bone Mineral Density Examination. J Womens Health 2006;15:1028–1034CrossRefGoogle Scholar
  8. 8.
    Tanaka S, Kuroda T, Saito M, Shiraki M. Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int 2013;24:69–76PubMedCrossRefGoogle Scholar
  9. 9.
    Ong T, Sahota O, Tan W, Marshall L. A United Kingdom perspective on the relationship between body mass index (BMI) and bone health: A cross sectional analysis of data from the Nottingham Fracture Liaison Service. Bone 2014;59:207–210PubMedCrossRefGoogle Scholar
  10. 10.
    Namwongprom S, Rojanasthien S, Mangklabruks A, Soontrapa S, Wongboontan C, Ongphiphadhanakul B. Effect of fat mass and lean mass on bone mineral density in postmenopausal and perimenopausal Thai women. Int J Womens health 2013;5:87–92PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Park J, Song YM, Sung J, Kim YS, Kim T, Cho S, Lee K. The association between fat and lean mass and bone mineral density: The Healthy Twin Study. Bone 2012;50:1006–1011PubMedCrossRefGoogle Scholar
  12. 12.
    Liu Y, Xu Y, Wen Y, Guan K, Ling W, He L, Su Y, Chen Y. Association of Weight-Adjusted Body Fat and Fat Distribution with Bone Mineral Density in Middle-Aged Chinese Adults: A Cross-Sectional Study. PLoS ONE 2013;8 (5): e63339. doi: 10.1371/journal.pone.0063339 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hsu Y, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 2006;83:146–154PubMedGoogle Scholar
  14. 14.
    Nur H, Toraman NF, Arica Z, Sarier N, Samur A. The relationship between body composition and bone mineral density in postmenopausal Turkish women. Rheumatol Int 2013;33:607–612PubMedCrossRefGoogle Scholar
  15. 15.
    Vorster HJ, Venter CS, Kruger MC, Vorster HH, Kruger HS. Impact of urbanisation on risk factors for osteoporosis in postmenopausal black South African women. J Endocrin Metab Diabet S Afr 2002;7:92–99Google Scholar
  16. 16.
    Kruger MC, De Winter RM, Becker PJ, Vorster HH. Changes in markers of bone turnover following urbanisation of black South African women. J Endocrinol Metab Diabet S Afr 2004;9:8–14Google Scholar
  17. 17.
    Kruger MC, Kruger IM, Wentzel-Viljoen E, Kruger A. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover. Nutr Res 2011;31:748–758PubMedCrossRefGoogle Scholar
  18. 18.
    Chantler S, Dickie K, Goedecke JH, Levitt NS, Lambert EV, Evans J, Joffe Y, Micklesfield LK. Site-specific differences in bone mineral density in black and white premenopausal South African women. Osteoporos Int 2012;23:533–5PubMedCrossRefGoogle Scholar
  19. 19.
    George JA., Micklesfield L, Norris S, Crowther N. The association between body composition, 25 (OH) D and PTH, and bone mineral density in black African and Asian Indian population groups. J Clin Endocrinol Metab, 2014. http://dx.doi.org/10.1210/jc.2013-3968Google Scholar
  20. 20.
    Micklesfield LK, Gray J, Taliep MS. Bone mineral density and body composition of South African cricketers. J Bone Mineral Metab 2012;30(2):232–237.CrossRefGoogle Scholar
  21. 21.
    Teo K, Chow CK, Vaz M, Rangarajan S, Yusuf S (2009) The Prospective Urban Rural Epidemiology (PURE) study: Examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am Heart J 2009;158:1–7PubMedCrossRefGoogle Scholar
  22. 22.
    Marfell-Jones M, Olds T, Stewart A, Carter L. International standards for anthropometric assessment. Australia: The international society for the advancement of Kinanthropometry, 2006Google Scholar
  23. 23.
    Kanis JA, Adachi JD, Cooper C, Harvey N, Clark P, Cummings SR, Diaz-Curiel M, Hiligsmann M, Papaioannou A, Pierroz DD, Silverman SL, Szulc P, and the Epidemiology and Quality of Life Working Group of IOF. Standardising the descriptive epidemiology of osteoporosis: Recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos Int 2013;24:2763–2764PubMedCrossRefGoogle Scholar
  24. 24.
    Hough S, Ascott-Evans B, Brown SL. NOFSA guideline for the diagnosis and management of osteoporosis: Guideline abstract. J Endocrinol, Metab Diabet S Afr 2010;15(3):107–108Google Scholar
  25. 25.
    Venter CS, MacIntyre UE & Vorster HH. The development and testing of a food portion photograph book for use in an African population. J Hum Nutr Dietet 2000;13:205–218CrossRefGoogle Scholar
  26. 26.
    Wentzel-Viljoen E, Laubscher R, Kruger A. Using different approaches to assess the reproducibility of a culturally sensitive quantified food frequency questionnaire. S Afr J Clin Nutr 2011;24:143–148Google Scholar
  27. 27.
    Kruger HS, Venter CS, Steyn HS. A standardised physical activity questionnaire for a population in transition: the Thusa study. Afr J Phys Health Education Recreat Dance 2000;6:54–64Google Scholar
  28. 28.
    Wolmarans P, Danster N, Dalton A, Rossouw K, Schonfeldt H (eds). Condensed food composition tables for South Africa. Medical Research Council, Parow Valley, Cape Town 2010;1–126Google Scholar
  29. 29.
    Black DM, Steinbuch M, Palermo L, Dargent-Molina P, Lindsay R, Hoseyni MS, Johnell O. An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int 2001;12:519–528PubMedCrossRefGoogle Scholar
  30. 30.
    Thandrayen K, Norris SA, Micklesfield, LK, & Pettifor JM. Fracture patterns and bone mass in South African adolescent- mother pairs: The birth to twenty cohort. Osteoporos Int 2014;25(2):693–700.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Assah FK, Ekelund U, Brage S, Wright A, Mbanya JC, Wareham NJ (2011) Accuracy and validity of a combined heart rate and motion sensor for the measurement of free-living physical activity energy expenditure in adults in Cameroon. Int J Epidemiol 2011;40(1):112–120PubMedCrossRefGoogle Scholar
  32. 32.
    Miles J & Shevlin M (2001) Applying regression and correlation: a guide for students and researchers. Sage, London, 2001Google Scholar
  33. 33.
    Gjesdal CG, Eide GE, Tell GS, Brun JG, Halse JI (2008) Impact of lean mass and fat mass on bone mineral density: The Hordaland Health Study. Maturitas 2008;59:191–200PubMedCrossRefGoogle Scholar
  34. 34.
    Cui LH. Shin M, Lee Y, Choi J, Kweon S, Park K, Chung E & Nam H (2007) Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J Bone Mineral Metab 2007;25(3):165–171.CrossRefGoogle Scholar
  35. 35.
    Law MR, Hackshaw AK. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: Recognition of a major effect. BMJ 1997;315(7112):841–846.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Daniel M, Martin AD, Drinkwater DT. Cigarette smoking, steroid hormones, and bone mineral density in young women. Calcif Tissue Int 1992;50(4):300–305.PubMedCrossRefGoogle Scholar
  37. 37.
    Bjarnason NH, Christiansen C. The influence of thinness and smoking on bone loss and response to hormone replacement therapy in early postmenopausal women. J Clin Endocrinol Metab 2000;85(2):590–596.PubMedCrossRefGoogle Scholar
  38. 38.
    Ward KD, Klesges RC. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 2001;68(5):259–270.PubMedCrossRefGoogle Scholar
  39. 39.
    Van der Voordt DJM, Dinant GJ, Geusens PP. Risk factors for osteoporosis related to their outcome: Fractures. Osteoporos Int 2001;12:630–638CrossRefGoogle Scholar
  40. 40.
    De Laet, C, Kanis JA, McCloskey EV, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, Mellstrom D, Melton III, L.J, Meunier PJ, Reeve J, Silman A, Tenenhouse A, Pols HAP. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos Int 2005;16:1330–1338PubMedCrossRefGoogle Scholar
  41. 41.
    Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72:690–693PubMedGoogle Scholar
  42. 42.
    Young KA, Norris JM, Engelman CD, Langefeld CD, Hairston KG, Haffner SM, Bryer-Ash M. Association of plasma vitamin D levels with adiposity in Hispanic and African Americans. J Clin Endocrinol Metab 2009;94:3306–3313PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Tieland M, Van Loon LJC, De Groot LCPGM, Brouwer-Brolsma EM, Nienaber-Rousseau C. Low vitamin D status is associated with reduced muscle mass and impaired physical performance in frail elderly people. Eur J Clin Nutr 2013;67:1050–1055PubMedCrossRefGoogle Scholar
  44. 44.
    Minghetti PP, Norman AW. 1,25(OH)2-vitamin D3 receptors: gene regulation and genetic circuitry. Federation of Am Soc for Experimental Biol J 1988;2:3043–3053Google Scholar
  45. 45.
    NIH. Calcium: Dietary supplements fact sheets, 2013. http://ods.od.nih.gov/factsheets/Calcium-HealthProfessional. Accessed 10th February 2014Google Scholar
  46. 46.
    Pedrera-Zamorano J, Calderon-García JF, Roncero-Martin R, Mañas-Nuñez P, Moran JM & Lavado-Garcia J. The protective effect of calcium on bone mass in postmenopausal women with high selenium intake. J Nutr Health Aging 2012;16(9):743–748.PubMedCrossRefGoogle Scholar
  47. 47.
    Heaney RP. Dairy and bone health. J Am Coll Nutr 2009;28:82S–90SPubMedCrossRefGoogle Scholar
  48. 48.
    Lötters FJB, Lenoir-Wijnkoop I, Rocher E, Fardellone P, Rizzoli R, Poley MJ. Dairy foods and osteoporosis: An example of assessing the health-economic impact of food products. Osteoporos Int 2013;24:139–150PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Gunn CA, Weber JL, Kruger MC. Diet, weight, cytokines and bone health in postmenopausal women. J Nutr Health Aging 2014;18 (5):479–486PubMedCrossRefGoogle Scholar
  50. 50.
    Coin A, Perissinotto E, Enzi G, Zamboni M, Inelmen EM, Frigo AC, Manzato E, Busetto L, Buja A, Sergi G. Predictors of low bone mineral density in the elderly: the role of dietary intake, nutritional status and sarcopenia. Eur J Clin Nutr 2008;62:802–809PubMedCrossRefGoogle Scholar
  51. 51.
    Stewart KJ, Deregis JR, Turner KL, Bacher AC, Sung, Hees PS, Tayback M, Ouyang P. Fitness, fatness and activity as predictors of bone mineral density in older persons. J Intern Med 2002;252:381–388PubMedCrossRefGoogle Scholar
  52. 52.
    Camhi SM, Katzmarzyk PT. Total and femoral neck bone mineral density and physical activity in a sample of men and women. Appl Physiol Nutr Metab 2012;37:947–954PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Saraví FD, Sayegh F. Bone mineral density and body composition of adult premenopausal women with three levels of physical activity. J Osteoporos doi.  org/10.1155/2013/953271, 2013Google Scholar
  54. 54.
    Morseth B, Emaus N, Wilsgaard T, Jacobsen BK, Jørgensen, L. Leisure time physical activity in adulthood is positively associated with bone mineral density 22 years later. The Tromsø study. Eur J Epidemiol 2010;25:325–331CrossRefGoogle Scholar
  55. 55.
    Pisciottano MVC, Szejnfeld VL, Castro CHDM, Pinto SS. The relationship between lean mass, muscle strength and physical ability in independent healthy elderly women from the community. J Nutr Health Aging 2014;18(5):554–8PubMedCrossRefGoogle Scholar
  56. 56.
    Muir JM, Ye C, Bhandari M, Thabane L, Adachi JD. The effect of regular physical activity on bone mineral density in post-menopausal women aged 75 and over: A retrospective analysis from the Canadian multicentre osteoporosis study. BMC Musculoskelet Disord, 2013;doi:  10.1186/1471-2474-14-253 Google Scholar
  57. 57.
    Ray WA, Griffin MR, Downey W, Melton LJ. Long-term use of thiazide diuretics and risk of hip fracture. Lancet 1989;1:687–690PubMedCrossRefGoogle Scholar
  58. 58.
    Feskanich D, Willett WC, Stampfer MJ, Colditz GA. A prospective study of thiazide use and fractures in women. Osteoporos Int 1997;7:79–84PubMedCrossRefGoogle Scholar
  59. 59.
    Recker RR, Davies KM, Hinders SM, et al. Bone gain in young adult women. J Am Med Association 1992;268:2403–2408.CrossRefGoogle Scholar
  60. 60.
    Lloyd R, Hind K, Carroll S, Cooke C, Micklesfield LK, Truscott JG, Parr B, Davies S. A pilot investigation of load-carrying on the head and bone mineral density in premenopausal, black African women. J Bone Miner Metab 2010;28:185–190PubMedCrossRefGoogle Scholar
  61. 61.
    Micklesfield LK, van der Merwe L, Lambert EV. Lifestyle questionnaire to evaluate risk for reduced bone mineral density in women. Clin J Sports Med 2005;15(5):340–348CrossRefGoogle Scholar
  62. 62.
    Looker AC, Orwoll ES, Johnston CCJ., Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 1997;12:1761–1768PubMedCrossRefGoogle Scholar
  63. 63.
    Micklesfield LK, Norris SA, Pettifor JM. Ethnicity and bone: A South African perspective (report). J Bone Mineral Metab 2011;(3):257–267CrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2015

Authors and Affiliations

  • O. F. Sotunde
    • 1
    • 5
    Email author
  • H. S. Kruger
    • 1
  • H. H. Wright
    • 1
    • 2
  • L. Havemann-Nel
    • 1
  • I. M. Kruger
    • 3
  • E. Wentzel-Viljoen
    • 1
  • A. Kruger
    • 3
  • M. Tieland
    • 4
  1. 1.Centre of Excellence for NutritionNorth-West UniversityPotchefstroomSouth Africa
  2. 2.School of Health and Sports SciencesUniversity of the Sunshine CoastMaroochydoreAustralia
  3. 3.Africa Unit for Transdisciplinary Health Research, Faculty of Health SciencesNorth-West UniversityPotchefstroomSouth Africa
  4. 4.Division of Human NutritionWageningen UniversityWageningenThe Netherlands
  5. 5.Centre of Excellence for NutritionNorth-West University, PotchefstroomNorth-WestSouth Africa

Personalised recommendations