The journal of nutrition, health & aging

, Volume 17, Issue 6, pp 553–560 | Cite as

A jerte valley cherry product provides beneficial effects on sleep quality. Influence on aging

  • M. Garrido
  • D. Gonzalez-Gomez
  • M. Lozano
  • C. Barriga
  • S. D. Paredes
  • Ana B. Rodríguez MoratinosEmail author



In the present work, we evaluated the effect of the intake of a Jerte Valley cherry-based product (JVCP), compared to a placebo product, on sleep quality, urinary 6-sulfatoxymelatonin (aMT6-s) levels and the serum concentration of interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α) and interleukin-8 (IL-8).


This was a blind, placebo-controlled, randomized, crossover study.


University of Extremadura (Spain).


Ten young (20–30 years old), ten middle-aged (35–55 years old), and ten elderly (65–85 years old) participants.


A placebo (Kool-Aid®) or JVCP (patent no. ES 2342141 B1) were consumed twice a day, as lunch and dinner desserts.


Actigraphic monitoring was used to record and display the temporal patterns of the individuals’ activity and rest. Urinary aMT6-s and serum cytokines (IL-1β, TNF-α and IL-8) were also determined.


The consumption of the JVCP improved the nocturnal rest, measured by sleep efficiency, number of awakenings, total nocturnal activity, sleep latency, assumed sleep, actual sleep time and immobility. Moreover, it was detected an increase in both the levels of aMT6-s found in first-void morning urine and the concentrations of serum pro-somnogenic cytokines obtained from samples collected at the acrophase of the melatonin rhythm (1.00 am) in all experimental age groups after the JVCP consumption. Generally, better results were obtained with advancing age.


The ingestion of the JVCP may contribute to establish a high-quality sleep and be used as a potential nutraceutical tool to prevent sleep disorders with the advance of age.

Key words

6-sulfatoxymelatonin melatonin cytokine sleep sweet cherry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldwin CM, Ervin AM, Mays MZ, Robbins J, Shafazand S, Walsleben J, Weaver T (2010) Sleep disturbances, quality of life, and ethnicity: the Sleep Heart Health Study. J Clin Sleep Med 6: 176–183.PubMedGoogle Scholar
  2. 2.
    Krueger JM (2008) The role of cytokines in sleep regulation. Curr Pharm Des 14: 3408–3416.PubMedCrossRefGoogle Scholar
  3. 3.
    Tan D, Manchester LC, Reiter RJ, Qi W, Hanes MA, Farley NJ (1999) High physiological levels of melatonin in the bile of mammals. Life Sci 65: 2523–2529.PubMedCrossRefGoogle Scholar
  4. 4.
    Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan DX, Sugino N, Reiter RJ (2009) Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 92: 328–343.PubMedCrossRefGoogle Scholar
  5. 5.
    Bittencourt LR, Santos-Silva R, de Mello MT, Andersen ML, Tufik S (2010) Chronobiological disorders: current and prevalent conditions. J Occup Rehabil 20: 21–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Klerman EB, Gershengorn HB, Duffy JF, Kronauer RE (2002) Comparisons of the variability of three markers of the human circadian pacemaker. J Biol Rhythms 17: 181–193.PubMedCrossRefGoogle Scholar
  7. 7.
    Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben-Shushan A, Ford I (2005) Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9: 41–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L, Hartling L, Baker G, Klassen TP, Vohra S (2005) The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med 20: 1151–1158.PubMedCrossRefGoogle Scholar
  9. 9.
    Paredes SD, Terrón MP, Valero V, Barriga C, Reiter RJ, Rodríguez AB (2007) Orally administered melatonin improves nocturnal rest in young and old ringdoves (Streptopelia risoria). Basic Clin Pharmacol Toxicol 100: 258–268.PubMedCrossRefGoogle Scholar
  10. 10.
    Paredes SD, Barriga C, Reiter RJ, Rodríguez AB (2009) Assessment of the potential role of tryptophan as the precursor of serotonin and melatonin for the aged sleep wake cycle and immune function: Streptopelia risoria as a model. Int J Tryptophan Res 2: 23–36.PubMedGoogle Scholar
  11. 11.
    Poeggeler B (2005) Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapy. Endocrine 27: 201–212.PubMedCrossRefGoogle Scholar
  12. 12.
    Pandi-Perumal SR, Seils LK, Kayumov L, Ralph MR, Lowe A, Moller H, Swaab DF (2002) Senescence, sleep, and circadian rhythms. Ageing Res Rev 1: 559–604.PubMedCrossRefGoogle Scholar
  13. 13.
    Harada T, Hirotani M, Maeda M, Nomura H, Takeuchi H (2007) Correlation between breakfast tryptophan content and morning-evening in Japanese infants and students aged 0-15 yrs. J Physiol Anthropol 26: 201–207.PubMedCrossRefGoogle Scholar
  14. 14.
    Paredes SD, Bejarano I, Terrón MP, Barriga C, Reiter RJ, Rodríguez AB (2009) Melatonin and tryptophan counteract lipid peroxidation and modulate superoxide dismutase activity in ringdove heterophils in vivo. Effect of antigen-induced activation and age. Age 31: 179–188.Google Scholar
  15. 15.
    Paredes SD, Marchena AM, Bejarano I, Espino J, Barriga C, Rial RV, Reiter RJ, Rodríguez AB (2009) Melatonin and tryptophan affect the activity-rest rhythm, core and peripheral temperatures, and interleukin levels in the ringdove: changes with age. J Gerontol A Biol Sci Med Sci 64: 340–350.PubMedCrossRefGoogle Scholar
  16. 16.
    Arnulf I, Quintin P, Alvarez JC, Vigil L, Touitou Y, Lèbre AS, Bellenger A, Varoquaux O, Derenne JP, Allilaire JF, Benkelfat C, Leboyer M (2002) Mid-morning tryptophan depletion delays REM sleep onset in healthy subjects. Neuropsychopharmacology 27: 843–851.PubMedCrossRefGoogle Scholar
  17. 17.
    Paredes SD, Terron MP, Cubero J, Valero V, Barriga C, Reiter RJ, Rodriguez AB (2007) Tryptophan increases nocturnal rest and affects melatonin and serotonin serum levels in old ringdove. Physiol Behav 90: 576–582.PubMedCrossRefGoogle Scholar
  18. 18.
    Glass JD, DiNardo LA, Ehlen JC (2000) Dorsal raphe nuclear stimulation of SCN serotonin release and circadian phase-resetting. Brain Res 859: 224–232.PubMedCrossRefGoogle Scholar
  19. 19.
    Besedovsky L, Lange T, Born J (2012) Sleep and immune function. Pflugers Arch 463: 121–137.PubMedCrossRefGoogle Scholar
  20. 20.
    Opp MR (2005) Cytokines and sleep. Sleep Med Rev 9: 355–364.PubMedCrossRefGoogle Scholar
  21. 21.
    Imeri L, Bianchi S, Mancia M (1997) Muramyl dipeptide and IL-1 effects on sleep and brain temperature after inhibition of serotonin synthesis. Am J Physiol 273: R1663–R1668.PubMedGoogle Scholar
  22. 22.
    Imeri L, Mancia M, Opp MR (1999) Blockade of 5-hydroxytryptamine (serotonin)-2 receptors alters interleukin-1-induced changes in rat sleep. Neuroscience 92: 745–749.PubMedCrossRefGoogle Scholar
  23. 23.
    McCune LM, Kubota C, Stendell-Hollis NR, Thomson CA (2011) Cherries and health: a review. Crit Rev Food Sci Nutr 51: 1–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Jacob RA, Spinozzi GM, Simon VA, Kelley DS, Prior RL, Hess-Pierce B, Kader AA (2003) Consumption of cherries lowers plasma urate in healthy women. J Nutr 133: 1826–1829.PubMedGoogle Scholar
  25. 25.
    Connolly DA, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP (2006) Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med 40: 679–683.PubMedCrossRefGoogle Scholar
  26. 26.
    González-Gómez D, Lozano M, Fernández-León MF, Bernalte MJ, Ayuso MC, Rodríguez AB (2010) Sweet cherry phytochemicals: identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). J Food Compos Anal 23: 533–539.CrossRefGoogle Scholar
  27. 27.
    González-Gomez D, Lozano M, Fernández-León MF, Ayuso MC, Bernalte MJ, Rodríguez AB (2009) Detection and quantification of melatonin and serotonin in eight Sweet Cherry cultivars (Prunus avium L.). Eur Food Res Technol 229: 223–229.CrossRefGoogle Scholar
  28. 28.
    Cubero J, Toribio F, Garrido M, Hernández MT, Maynar J, Barriga C, Rodríguez AB (2010) Assays of the amino acid tryptophan in cherries by HPLC-fluorescence. Food Analytical Methods. 3, 36–39.CrossRefGoogle Scholar
  29. 29.
    Garrido M, Paredes SD, Cubero J, Lozano M, Toribio-Delgado AF, Muñoz JL, Reiter RJ, Barriga C, Rodríguez AB (2010) Jerte Valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J Gerontol A Biol Sci Med Sci 65: 909–914.PubMedCrossRefGoogle Scholar
  30. 30.
    Garrido M, González-Gómez D, Lozano M, Barriga C, Paredes SD, Rodríguez AB (2012) Characterization and trials of a Jerte Valley cherry product as a natural antioxidant-enriched supplement. Italian J Food Sci (in press).Google Scholar
  31. 31.
    Delgado J, Terrón MP, Garrido M, Barriga C, Paredes SD, Espino J, Rodríguez AB (2012) Systemic inflammatory load in young and old ringdoves is modulated by consumption of a Jerte Valley cherry-based product. J Med Food 15: 707–712.PubMedCrossRefGoogle Scholar
  32. 32.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175–191.PubMedCrossRefGoogle Scholar
  33. 33.
    Chauffard-Alboucq FA., Leathwood PD, Dormond CA (1991) Changes in plasma amino acid and subjective sleepiness ratings in humans after consuming Ltryptophan/maltodextrin mixes. Amino Acids 1:37–45.CrossRefGoogle Scholar
  34. 34.
    Wurtman RJ, Zhdanova I (1995) Improvement of sleep quality by melatonin. Lancet 346: 1491.PubMedCrossRefGoogle Scholar
  35. 35.
    Hughes RJ, Badia P (1997) Sleep-promoting and hypothermic effects of daytime melatonin administration in humans. Sleep 20:124–131.PubMedGoogle Scholar
  36. 36.
    Aparicio S, Garau C, Esteban S, Nicolau MC, Rivero M, Rial RV (2007) Chrononutrition: use of dissociated day/night infant milk formulas to improve the development of the wake-sleep rhythms. Effects of tryptophan. Nutr Neurosci 10: 137–143.CrossRefGoogle Scholar
  37. 37.
    Silber BY, Schmitt JA (2010) Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev 34: 387–407.PubMedCrossRefGoogle Scholar
  38. 38.
    Chojnacki C, Poplawski T, Klupinska G, Blasiak J, Chojnacki J, Reiter RJ. Secretion of melatonin and 6-sylfatoxymelatonin urinary excretion in functional dyspepsia. World J. Gastroenterol. 2011, 17: 2646–2651.PubMedCrossRefGoogle Scholar
  39. 39.
    Oba S, Nakamura K, Sahashi Y, Hattori A, Nagata C (2008) Consumption of vegetables alters morning urinary 6-sulfatoxymelatonin concentration. J Pineal Res 45: 17–23.PubMedCrossRefGoogle Scholar
  40. 40.
    González-Flores D, Velardo B, Garrido M, González-Gómez D, Lozano M, Ayuso MC, Barriga C, Paredes SD, Rodríguez AB (2011) Ingestion of Japanese plums (Prunus salicina Lindl. cv. Crimson globe) increases the urinary 6-sulfatoxymelatonin and total antioxidant capacity levels in young, middle-aged, and elderly humans: Nutritional and functional characterization of their content. J Food Nutr Res 50: 229–236.Google Scholar
  41. 41.
    González-Flores D, Gamero E, Garrido M, Ramírez R, Moreno D, Delgado J, Valdés E, Barriga C, Rodríguez AB, Paredes SD (2012) Urinary 6-sulfatoxymelatonin and total antioxidant capacity increase after the intake of a grape juice cv. Tempranillo stabilized with HHP. Food Funct 3: 34–39.PubMedCrossRefGoogle Scholar
  42. 42.
    Haimov I, Laudon M, Zisapel N, Souroujon M, Nof D, Shlitner A, Herer P, Tzischinsky O, Lavie P (1994) Sleep disorders and melatonin rhythms in elderly people. BMJ 309: 167.PubMedCrossRefGoogle Scholar
  43. 43.
    Hajak G, Rodenbeck A, Adler L, Huether G, Bandelow B, Herrendorf G, Staedt J, Rüther E (1996) Nocturnal melatonin secretion and sleep after doxepin administration in chronic primary insomnia. Pharmacopsychiatry 29: 187–192.PubMedCrossRefGoogle Scholar
  44. 44.
    Rodenbeck A, Huether G, Ruther E, Hajak G (1999) Nocturnal melatonin secretion and its modification by treatment in patients with sleep disorders. Adv Exp Med Biol 467: 89–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Youngstedt SD, Kripke DF, Elliott JA, Klauber MR (2001) Circadian abnormalities in older adults. J Pineal Res 31: 264–272.PubMedCrossRefGoogle Scholar
  46. 46.
    Mahlberg R, Tilmann A, Salewski L, Kunz D (2006) Normative data on the daily profile of urinary 6-sulfatoxymelatonin in healthy subjects between the ages of 20 and 84. Psychoneuroendocrinology 31: 634–641.PubMedCrossRefGoogle Scholar
  47. 47.
    Pappenheimer JR, Koski G, Fencl V, Karnovsky ML, Krueger J (1975) Extraction of sleep-promoting factor S from cerebrospinal fluid and from brain of sleep-deprived animals. J Neurophysiol 38: 1299–1311.PubMedGoogle Scholar
  48. 48.
    Borbély AA, Tobler I (1989) Endogenous sleep-promoting substances and sleep regulation. Physiol Rev 69: 605–670.PubMedGoogle Scholar
  49. 49.
    Moldofsky H, Lue FA, Eisen J, Keystone E, Gorcynski RM (1986) The relationship of interleukin-1 and immune functions to sleep in humans. Psychosom Med 48: 309–318.PubMedGoogle Scholar
  50. 50.
    Alam MN, McGinty D, Bashir T, Kumar S, Imeri L, Opp MR, Szymusiak R (2004) Interleukin-1beta modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: Role in sleep regulation. Eur J Neurosci 20: 207–216.PubMedCrossRefGoogle Scholar
  51. 51.
    Irwin M, Rinetti G, Redwine L, Motivala S, Dang J, Ehlers C (2004) Nocturnal proinflammatory cytokine-associated sleep disturbances in abstinent African American alcoholics. Brain Behav Immun 18: 349–360.PubMedCrossRefGoogle Scholar
  52. 52.
    Carrillo-Vico A, García-Mauriño S, Calvo JR, Guerrero JM (2003) Melatonin counteracts the inhibitory effect of PGE2 on IL-2 production in human lymphocytes via its mt1 membrane receptor. FASEB J 17: 755–757.PubMedGoogle Scholar
  53. 53.
    Carrillo-Vico A, García-Pergañeda A, Naji L, Calvo JR, Romero MP, Guerrero JM (2003) Expression of membrane and nuclear melatonin receptor mRNA and protein in the mouse immune system. Cell Mol Life Sci 60: 2272–2278.PubMedCrossRefGoogle Scholar
  54. 54.
    García-Mauriño S, Gonzalez-Haba MG, Calvo JR, Rafii-El-Idrissi M, Sánchez-Margalet V, Goberna R, Guerrero JM (1997) Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: a possible nuclear receptor- mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol 159: 574–581.PubMedGoogle Scholar
  55. 55.
    García-Mauriño S, Pozo D, Carrillo-Vico A, Calvo JR, Guerrero JM (1999) Melatonin activates Th1 lymphocytes by increasing IL-12 production. Life Sci 65: 2143–2150.PubMedCrossRefGoogle Scholar
  56. 56.
    Fjaerly O, Lund T, Osterud B (1999) The effect of melatonin on cellular activation processes in human blood. J Pineal Res 26: 50–55.CrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2013

Authors and Affiliations

  • M. Garrido
    • 1
  • D. Gonzalez-Gomez
    • 2
  • M. Lozano
    • 3
  • C. Barriga
    • 1
  • S. D. Paredes
    • 4
  • Ana B. Rodríguez Moratinos
    • 1
    • 5
    Email author
  1. 1.Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of ScienceUniversity of ExtremaduraBadajozSpain
  2. 2.Department of Analytical Science, Faculty of ScienceOpen UniversityMadridSpain
  3. 3.Department of Horticulture and PomologyTechnological Institute of Food and Agriculture of Extremadura (INTAEX)BadajozSpain
  4. 4.Department of Physiology, School of MedicineComplutense University of MadridMadridSpain
  5. 5.Department of Physiology, Faculty of ScienceUniversity of ExtremaduraBadajozSpain

Personalised recommendations