The journal of nutrition, health & aging

, Volume 16, Issue 1, pp 8–13

Genome-wide linkage scan for quantitative trait loci underlying normal variation in heel bone ultrasound measures

  • Miryoung Lee
  • A. C. Choh
  • K. D. Williams
  • V. Schroeder
  • T. D. Dyer
  • J. Blangero
  • S. A. Cole
  • W. M. C. Chumlea
  • D. L. Duren
  • R. J. Sherwood
  • R. M. Siervogel
  • B. Towne
  • S. A. Czerwinski
Genome-Wide Linkage Scan for Quantitative Trait Loci Underlying Normal Variation


Quantitative ultrasound (QUS) traits are correlated with bone mineral density (BMD), but predict risk for future fracture independent of BMD. Only a few studies, however, have sought to identify specific genes influencing calcaneal QUS measures. The aim of this study was to conduct a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing normal variation in QUS traits. QUS measures were collected from a total of 719 individuals (336 males and 383 females) from the Fels Longitudinal Study who have been genotyped and have at least one set of QUS measurements. Participants ranged in age from 18.0 to 96.6 years and were distributed across 110 nuclear and extended families. Using the Sahara ® bone sonometer, broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (QUI) were collected from the right heel. Variance components based linkage analysis was performed on the three traits using 400 polymorphic short tandem repeat (STR) markers spaced approximately 10 cM apart across the autosomes to identify QTL influencing the QUS traits. Age, sex, and other significant covariates were simultaneously adjusted. Heritability estimates (h2) for the QUS traits ranged from 0.42 to 0.57. Significant evidence for a QTL influencing BUA was found on chromosome 11p15 near marker D11S902 (LOD = 3.11). Our results provide additional evidence for a QTL on chromosome 11p that harbors a potential candidate gene(s) related to BUA and bone metabolism.

Key words

Genetic linkage quantitative ultrasound calcaneus family studies bone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pocock NA, Eisman JA, Hopper JL, Yeaste MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults: a twin study. J Clin Invest. 80:706–710.PubMedCrossRefGoogle Scholar
  2. 2.
    Karasik D, Cupples LA, Hannan MT, Kiel DP (2004) Genome screen for a combined bone phenotype using principal component analysis: the Framingham Study. Bone. 34:547–556.PubMedCrossRefGoogle Scholar
  3. 3.
    Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL (2003) Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone. 33:839–846.PubMedCrossRefGoogle Scholar
  4. 4.
    Ralston SH, Galwey N, MacKay I, Albagha OM, Cardon L, Compston JE, Cooper C, Duncan E, Keen R, Langdahl B, McLellan A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass J, Bennett ST (2005) Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet. 14:943–951.PubMedCrossRefGoogle Scholar
  5. 5.
    Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D (2007) Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 8 Suppl 1:S14.CrossRefGoogle Scholar
  6. 6.
    Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 358:2355–2365.PubMedCrossRefGoogle Scholar
  7. 7.
    Karasik D, Dupuis J, Cho K, Cupples LA, Zhou Y, Kiel DP, Demissie S (2010) Refined QTLs of osteoporosis-related traits by linkage analysis with genome-wide SNPs: Framingham SHARe. Bone. 46:1114–1121.PubMedCrossRefGoogle Scholar
  8. 8.
    Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 41:1199–1206.PubMedCrossRefGoogle Scholar
  9. 9.
    Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Zillikens MC, Wilson SG, Mullin BH, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra BA, Pols HA, Sigurdsson G, Thorsteinsdottir U, Soranzo N, Williams FM, Zhou Y, Ralston SH, Thorleifsson G, van Duijn CM, Kiel DP, Stefansson K, Uitterlinden AG, Ioannidis JP, Spector TD (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 151:528–537.PubMedGoogle Scholar
  10. 10.
    Gluer CC, Hans D (1999) How to use ultrasound for risk assessment: a need for defining strategies. Osteoporos Int. 9:193–195.PubMedCrossRefGoogle Scholar
  11. 11.
    Pocock NA, Culton NL, Gilbert GR, Hoy ML, Babicheva R, Chu JM, Lee KS, Freund J (2000) Potential roles for quantitative ultrasound in the management of osteoporosis. Med J Aust. 173:355–358.PubMedGoogle Scholar
  12. 12.
    Bauer DC, Ewing SK, Cauley JA, Ensrud KE, Cummings SR, Orwoll ES (2007) Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int. 18:771–777.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson SG, Reed PW, Andrew T, Barber MJ, Lindersson M, Langdown M, Thompson D, Thompson E, Bailey M, Chiano M, Kleyn PW, Spector TD (2004) A genome-screen of a large twin cohort reveals linkage for quantitative ultrasound of the calcaneus to 2q33-37 and 4q12-21. J Bone Miner Res. 19:270–277.PubMedCrossRefGoogle Scholar
  14. 14.
    Karasik D, Myers RH, Hannan MT, Gagnon D, McLean RR, Cupples LA, Kiel DP (2002) Mapping of quantitative ultrasound of the calcaneus bone to chromosome 1 by genome-wide linkage analysis. Osteoporos Int. 13:796–802.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee M, Czerwinski SA, Choh AC, Towne B, Demerath EW, Chumlea WC, Sun SS, Siervogel RM (2004) Heritability of calcaneal quantitative ultrasound measures in healthy adults from the Fels Longitudinal Study. Bone. 35:1157–1163.PubMedCrossRefGoogle Scholar
  16. 16.
    Roche AF (1992) Growth, maturation, and body composition: the Fels Longitudinal Study, 1929–1991. Cambridge University Press, New York, NY.CrossRefGoogle Scholar
  17. 17.
    Baecke JAH, Burema J, Frijters JER (1982) A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 36:936–942.PubMedGoogle Scholar
  18. 18.
    Murray JC, Buetow KH, Weber JL, Ludwigsen S, Scherpbier-Heddema T, Manion F, Quillen J, Sheffield VC, Sunden S, Duyk GM, et al. (1994) A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science. 265:2049–2054.PubMedCrossRefGoogle Scholar
  19. 19.
    Dyke B (1998) PEDSYS: A Pedigree Data Management System. Population Genetics Laboratory, Sounthwest Foundation for Biomedical Research, San Antonio, Tex.Google Scholar
  20. 20.
    Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 62:1198–1211.PubMedCrossRefGoogle Scholar
  21. 21.
    Sobel E, Papp JC, Lange K (2002) Detection and integration of genotyping errors in statistical genetics. Am J Hum Genet. 70:496–508.PubMedCrossRefGoogle Scholar
  22. 22.
    Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet. 31:241–247.PubMedGoogle Scholar
  23. 23.
    Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet. 61:748–760.PubMedCrossRefGoogle Scholar
  24. 24.
    Feingold E, Brown PO, Siegmund D (1993) Gaussian models for genetic linkage analysis using complete high-resolution maps of identity by descent. Am J Hum Genet. 53:234–251.PubMedGoogle Scholar
  25. 25.
    Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 11:241–247.PubMedCrossRefGoogle Scholar
  26. 26.
    Ralston SH (2007) Genetics of osteoporosis. Proc Nutr Soc. 66:158–165.PubMedCrossRefGoogle Scholar
  27. 27.
    Toyras J, Nieminen MT, Kroger H, Jurvelin JS (2002) Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently. Bone. 31:503–507.PubMedCrossRefGoogle Scholar
  28. 28.
    Njeh CF, Fuerst T, Diessel E, Genant HK (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int. 12:1–15.PubMedGoogle Scholar
  29. 29.
    Bouxsein ML, Radloff SE (1997) Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. J Bone Miner Res. 12:839–846.PubMedCrossRefGoogle Scholar
  30. 30.
    Shaffer JR, Kammerer CM, Bruder JM, Cole SA, Dyer TD, Almasy L, Maccluer JW, Blangero J, Bauer RL, Mitchell BD (2009) Quantitative trait locus on chromosome 1q influences bone loss in young Mexican American adults. Calcif Tissue Int. 84:75–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu YZ, Pei YF, Liu JF, Yang F, Guo Y, Zhang L, Liu XG, Yan H, Wang L, Zhang YP, Levy S, Recker RR, Deng HW (2009) Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PloS one. 4:e6827.PubMedCrossRefGoogle Scholar
  32. 32.
    Cohen-Barak O, Hagiwara N, Arlt MF, Horton JP, Brilliant MH (2001) Cloning, characterization and chromosome mapping of the human SOX6 gene. Gene. 265:157–164.PubMedCrossRefGoogle Scholar
  33. 33.
    Hagiwara N, Yeh M, Liu A (2007) Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn. 236:2062–2076.PubMedCrossRefGoogle Scholar
  34. 34.
    Smits P, Dy P, Mitra S, Lefebvre V (2004) Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. J Cell Biol. 164:747–758.PubMedCrossRefGoogle Scholar
  35. 35.
    Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM (2003) Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol. 257:292–301.PubMedCrossRefGoogle Scholar
  36. 36.
    Deftos LJ (2006) Calcitonin. In Favus MD (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th. American Society for Bone and Mineral Research, Washington, D. C., pp 115–117.Google Scholar
  37. 37.
    Cornish J, Callon KE, Bava U, Kamona SA, Cooper GJ, Reid IR (2001) Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone. 29:162–168.PubMedCrossRefGoogle Scholar
  38. 38.
    Villa I, Melzi R, Pagani F, Ravasi F, Rubinacci A, Guidobono F (2000) Effects of calcitonin gene-related peptide and amylin on human osteoblast-like cells proliferation. Eur J Pharmacol. 409:273–278.PubMedCrossRefGoogle Scholar
  39. 39.
    Bikle D (2009) Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 94:26–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Holick MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 80:1678S–1688S.PubMedGoogle Scholar

Copyright information

© Serdi and Springer Verlag France 2012

Authors and Affiliations

  • Miryoung Lee
    • 1
    • 4
  • A. C. Choh
    • 1
  • K. D. Williams
    • 2
  • V. Schroeder
    • 1
  • T. D. Dyer
    • 3
  • J. Blangero
    • 3
  • S. A. Cole
    • 3
  • W. M. C. Chumlea
    • 1
  • D. L. Duren
    • 1
  • R. J. Sherwood
    • 1
  • R. M. Siervogel
    • 1
  • B. Towne
    • 1
  • S. A. Czerwinski
    • 1
  1. 1.Lifespan Health Research CenterWright State University Boonshoft School of MedicineDaytonUSA
  2. 2.Department of AnthropologyTemple UniversityPhiladelphiaUSA
  3. 3.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan AntonioUSA
  4. 4.Lifespan Health Research Center, Voice: 1-937-775-1448, Department of Community HealthWright State University, Boonshoft School of MedicineDaytonUSA

Personalised recommendations