The journal of nutrition, health & aging

, Volume 15, Issue 8, pp 725–730

Designing phase II B trials in sarcopenia: The best target population

JNHA: Frailty and Cognitive Decline


Despite the existing limitations and controversies regarding the definition of sarcopenia and its clinical consequences, the current scientific evidence strongly suggests that muscle decline is a primary determinant of the disabling process (and likely of other major health-related events). In fact, the muscle loss (in terms of mass as well as strength) occurring with aging has been growingly associated with mobility impairment and disability in older persons. Unfortunately, current evidence is mainly from observational studies. Times are mature to begin testing interventions aimed at modifying the sarcopenia process through the design and development of specific clinical trials. Considering the emergence of many promising interventions towards this age-related condition (e.g., physical exercise [in particular, resistance training], testosterone, antioxidant supplementations), the need for Phase II trial designs is high. In the present report, we discuss which are the major issues related to the design of Phase II clinical trials on sarcopenia with particular focus on the participant’s characteristics to be considered as possible inclusion and exclusion criteria.

Key words

Sarcopenia clinical trials study design skeletal muscle aging muscle strength older persons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenberg IH. Sarcopenia origins and clinical relevance. JNutr. 1997;127(5 Suppl):990S.Google Scholar
  2. 2.
    Abellan van Kan G, Andre E, Bischoff Ferrari HA, Boirie Y, Onder G, Pahor M et al. Carla Task Force on Sarcopenia propositions for clinical trials. J Nutr Health Aging. 2009;13(8):700.PubMedCrossRefGoogle Scholar
  3. 3.
    Cesari M, Ferrini A Zamboni V, Pahor M. Sarcopenia current clinical and research issues. Open Geriatr Med J. 2008; 1:14.CrossRefGoogle Scholar
  4. 4.
    Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159(4):413.PubMedCrossRefGoogle Scholar
  5. 5.
    Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health aging and body composition study. J Am Geriatr Soc. 2002;50(5):897.PubMedCrossRefGoogle Scholar
  6. 6.
    Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889.PubMedCrossRefGoogle Scholar
  7. 7.
    Cesari M, Pahor M, Lauretani F, Zamboni V, Bandinelli S, Bernabei R et al. Skeletal Muscle and Mortality Results From the InCHLANTi Study. J Gerontol A Biol Sci Med Sci. 2009Google Scholar
  8. 8.
    Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059.PubMedCrossRefGoogle Scholar
  9. 9.
    Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72.PubMedCrossRefGoogle Scholar
  10. 10.
    Cesari M, Pahor M. Target population for clinical trials on sarcopenia. J Nutr Health Aging. 2008;12(7):470.PubMedCrossRefGoogle Scholar
  11. 11.
    Studenski S. Target population for clinical trials. J Nutr Health Aging. 2009;13(8):729.PubMedCrossRefGoogle Scholar
  12. 12.
    Cruz-Jentoft AT, Baeyeas JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al. Sarcopenia European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Ageing. 2010;39(4):412.PubMedCrossRefGoogle Scholar
  13. 13.
    Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829.PubMedCrossRefGoogle Scholar
  14. 14.
    Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231.PubMedCrossRefGoogle Scholar
  15. 15.
    Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008;11(6):693.PubMedCrossRefGoogle Scholar
  16. 16.
    Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V. Sarcopenic obesity: a new category of obesity in the elderfy. Nutr Metab Cardiovasc Dis. 2008; 18(5):388.PubMedCrossRefGoogle Scholar
  17. 17.
    Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penniax BW, Lenchik L et al. Sarcopenia, obesity, and inflammation-results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am J Clin Nutr. 2005;82(2):428.PubMedGoogle Scholar
  18. 18.
    Newman AB, Kupelian V, Visser M, Simoasick E, Goodpaster B, Nevitt M et al. Sarcopenia alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51(11): 1602.PubMedCrossRefGoogle Scholar
  19. 19.
    Leeuwenburgh C. Role of apoptosis in sarcopenia. J Gerontol A Biol Sci Med Sci. 2003;58(11):999.PubMedCrossRefGoogle Scholar
  20. 20.
    Dirks AJ, Hofer T, Marzetti E, Pahor M, Leeuwenburgh C. Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev. 2006;5(2):179.PubMedCrossRefGoogle Scholar
  21. 21.
    Roubenoff R. Physical activity, inflammation, and muscle loss. Nutr Rev. 2007;65(12 Pt 2):S208.PubMedCrossRefGoogle Scholar
  22. 22.
    Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin-resistance and dysglycemia findings from the National Health and Nutrition Examination Survey HI. PLoS One. 2010;5(5)el0805.CrossRefGoogle Scholar
  23. 23.
    Thall PF, Simon R. Practical Bayesian guidelines for phase ECB clinical trials. Biometrics. 1994;50(2):337.PubMedCrossRefGoogle Scholar
  24. 24.
    Gray R, Manola J, Saxman S, Wright J, Dutcher J, Atkins M et al Phase II clinical trial design: methods in translational research from the Genitourinary Committee at the Eastern Cooperative Oncology Group. Clin Cancer Res. 2006;12(7 Pt 1):1966.PubMedCrossRefGoogle Scholar
  25. 25.
    Case LD, Morgan TM. Design of Phase II cancer trials evaluating survival probabilities. BMC Med Res Methodol. 2003;3:6.PubMedCrossRefGoogle Scholar
  26. 26.
    Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? Ann Intern Med. 1996;125(7):605.PubMedGoogle Scholar
  27. 27.
    Beenakker KG, Ling CH, Meskers CG, de Craen AJ, Stijnen T, Westendorp RG et al. Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res Rev. 2010Google Scholar
  28. 28.
    Walsmith J, Roubenoff R. Cachexia in rheumatoid arthritis. Int J Cardiol. 2002;85(1):89.PubMedCrossRefGoogle Scholar
  29. 29.
    Giles JT, Ling SM, Ferrucci L, Bartlett SJ, Andersen RE, Towns M et al. Abnormal body composition phenotypes in older rheumatoid arthritis patients: association with disease characteristics and pharmacotherapies. Arthritis Rheum. 2008;59(6):807.PubMedCrossRefGoogle Scholar
  30. 30.
    Roubenoff R. Sarcopenic obesity: does muscle loss cause fat gain? Lessons from rheumatoid arthritis and osteoarthritis. Ann NY Acad Sci. 2000:904:553.PubMedCrossRefGoogle Scholar
  31. 31.
    Cesari M, Kritchevsky SB, Penniax BW, Nicklas BJ, Simonsick EM, Newman AB et al. Prognostic value of usual gait speed in well-functioning older people-results from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2005;53(10): 1675.PubMedCrossRefGoogle Scholar
  32. 32.
    Manini TM, Visser M, Won-Park S, Patel KV, Strotmeyer ES, Chen H et al. Knee extension strength cutpoints for maintaining mobility. J Am Geriatr Soc. 2007;55(3):451.PubMedCrossRefGoogle Scholar
  33. 33.
    Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol ABiol SciMed Sci. 2000;55(4):M221.CrossRefGoogle Scholar
  34. 34.
    Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332(9):556.PubMedCrossRefGoogle Scholar
  35. 35.
    Manini TM, Visser M, Won-Park S, Patel KV, Strotmeyer ES, Chen H, Goodpaster B, De Rekeneire N, Newman AB, Simonsick EM, Kritchevsky SB, Ryder K, Schwartz AV, Harris TB. Knee extension strength cutpoints for maintaining mobility. J Am Geriatr Soc 2007;55(3):451.PubMedCrossRefGoogle Scholar
  36. 36.
    Bortz WMn. A conceptual framework of frailty: a review. J Gerontol A Biol Sci Med Sci. 2002;57(5):M283.PubMedCrossRefGoogle Scholar
  37. 37.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755.PubMedGoogle Scholar
  38. 38.
    Melton L Jr, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL. Epidemiology of sarcopenia, J Am Geriatr Soc. 2000;48(6):625.PubMedGoogle Scholar
  39. 39.
    Castaneda C, Janssen I. Ethnic comparisons of sarcopenia and obesity in diabetes. Ethn Dis.2005;15(4):664.PubMedGoogle Scholar
  40. 40.
    Wang Z, Heo M, Lee RC, Kotier DP, Withers RT, Heymsfield SB. Muscularity in adult humans: proportion of adipose tissue-free body mass as skeletal muscle. Am J Hum Biol 2001;13(5):612.PubMedCrossRefGoogle Scholar
  41. 41.
    Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72(3):694.PubMedGoogle Scholar
  42. 42.
    Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J AppI Physiol 2001;90(6):2157.Google Scholar
  43. 43.
    Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM. Acute treatment with tumour necrosis factor-alpha induces changes in protein metabolism in rat skeletal muscle. Mol Cell Biochem. 1993;125(1): 11.PubMedCrossRefGoogle Scholar
  44. 44.
    Charters Y, Grimble RF. Effect of recombinant human tumour necrosis factor alpha on protein synthesis in liver, skeletal muscle and skin of rats. Biochem J. 1989;258(2):493.PubMedGoogle Scholar
  45. 45.
    Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB et al. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci. 2009;64(11): 1183.PubMedCrossRefGoogle Scholar
  46. 46.
    Roubenoff R. Catabolism of aging: is it an inflammatory process? Curr Opin Clin Nutr Metab Care. 2003;6(3):295.PubMedGoogle Scholar
  47. 47.
    Eisenstaedt R, Penniax BW, Woodman RC. Anemia in the elderly: current understanding and emerging concepts. Blood Rev. 2006;20(4):213.PubMedCrossRefGoogle Scholar
  48. 48.
    Tipton KD, Ferrando AA. Improving muscle mass: response of muscle metabolism to exercise, nutrition and anabolic agents. Essays Biochem. 2008;44:85.PubMedCrossRefGoogle Scholar
  49. 49.
    Herbst KL, Bhasia S. Testosterone action on skeletal muscle. Curr Opin Clian Nutr Metab Care. 2004;7(3):271.CrossRefGoogle Scholar
  50. 50.
    Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgiao F. The GHIGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol. 2010;205(3):201.PubMedCrossRefGoogle Scholar
  51. 51.
    Cesari M, Kritchevsky SB, Leeuwenburgh C, Pahor M. Oxidative damage and platelet activation as new predictors of mobility disability and mortality in elders. Antioxid Redox Signal 2006;8(3–4):609.PubMedCrossRefGoogle Scholar
  52. 52.
    Azuma K, Heilbrona LK, Albu JB, Smith SR, Ravussin E, Kelley DE. Adipose tissue distribution in relation to insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab. 2007;293(1):E435.PubMedCrossRefGoogle Scholar
  53. 53.
    Pradhan AD, Maason JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin6, and risk of developing type 2 diabetes mellitus. JAMA 2001;286(3):327.PubMedCrossRefGoogle Scholar
  54. 54.
    Anker SD, Sharma R. Thesyndrome of cardiac cachexia. Int J Cardiol. 2002;85(1):51.PubMedCrossRefGoogle Scholar

Copyright information

© Serdi and Springer Verlag France 2011

Authors and Affiliations

  1. 1.Department of Aging and Geriatric ResearchUniversity of Florida — Institute on AgingGainesvilleUSA
  2. 2.Area di GeriatriaUniversità Campus Bio-MedicoRomaItaly
  3. 3.Area di GeriatriaUniversità Campus Bio-MedicoRomaItaly

Personalised recommendations