The journal of nutrition, health & aging

, Volume 15, Issue 3, pp 240–244 | Cite as

The correlation between the clinical laboratory data and the telomere length in peripheral blood leukocytes of Japanese female patients with hypertension

  • Toyoki Maeda
  • J. -I. Oyama
  • M. Sasaki
  • T. Arima
  • N. Makino
Clinical Laboratory Data, Telomere Length in Peripheral Blood Leukocytes



This study investigated the correlation between the chronological age, telomere length in peripheral blood leukocytes and blood laboratory data of female patients with mild hypertension to identify laboratory data that reflect the biological aging of individuals.


Cross-sectional population-based study.


Outpatient clinic of the Department of Cardiovascular, Respiratory, and Geriatric Medicine Kyushu University Hospital at Beppu in Japan.


Outpatients with mild hypertension treated with a low dose of amlodipine.


The laboratory data of female patients were collected and the telomere length parameters in their peripheral blood leukocytes were determined by Southern blotting. Any correlations between the laboratory data and the telomere length parameters were assessed.


The patients showed a positive correlation between the telomere length and the high density lipoprotein, albumin, creatinine, hemoglobin levels, red blood cell counts, and a negative correlation with the globulin level. The extent of subtelomeric methylation of long telomeres tended to correlate negatively with the telomeric attrition. Only the creatinine level correlated with subtelomeric methylation, but not with telomeric length.


HDL and the albumin/globulin ratio were potential indicators for individual somatic genomic aging. Creatinine may therefore be a useful indicator for a predisposition for telomeric attrition.

Key words

Telomere length subtelomeric methylation blood sugar level renal function arteriosclerosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blackburn EH Structure and function of telomeres. Nature (London). 1991;350:569–573.CrossRefGoogle Scholar
  2. 2.
    Zakian VA. Telomeres: beginning to understand the end. Science. 1995;270:1601–1607.PubMedCrossRefGoogle Scholar
  3. 3.
    Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88:557–795.PubMedCrossRefGoogle Scholar
  4. 4.
    Iwama H, Ohyashiki K, Ohyashiki JH, et al. Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum Genet. 1998;102:397–402.PubMedCrossRefGoogle Scholar
  5. 5.
    Guan JZ, Maeda T, Sugano M, Oyama J, Higuchi Y, Makino N. Change in the telomere length distribution with age in the Japanese population. Mol Cell Biochem. 2007;304:253–260.CrossRefGoogle Scholar
  6. 6.
    Sidorova I, Kimurab M, Yashinc A, Aviv A. Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth. Experimental Hematology 2009;37:514–524.CrossRefGoogle Scholar
  7. 7.
    Okuda K, Khan MY, Skurnick J, et al. Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis. 2000;152:391–398.PubMedCrossRefGoogle Scholar
  8. 8.
    Uziel O, Singer JA, Danicek V, et al. Telomere dynamics in arteries and mononuclear cells of diabetic patients: effect of diabetes and of glycemic control. Exp Gerontol. 2007;42:971–978.PubMedCrossRefGoogle Scholar
  9. 9.
    Panossian LA, Porter VR, Valenzuela HF, et al. Telomere shortening in T cells correlates with Alzheimer’s disease status. Neurobiol ageing. 2003;24:77–84.CrossRefGoogle Scholar
  10. 10.
    Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366:662–664.PubMedCrossRefGoogle Scholar
  11. 11.
    Epel ES, Blackburn EH, Lin F, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101:17312–17315.PubMedCrossRefGoogle Scholar
  12. 12.
    Guan JZ, Maeda T, Sugano M, et al. A Percentage analysis of the telomere length in Parkinson’s disease patients. J Gerontol A Biol Sci Med Sci. 2008;63A:467–473.Google Scholar
  13. 13.
    Guan JZ, Maeda T, Sugano M, et al. An analysis of telomere length in sarcoidosis. J Gerontol A Biol Sci Med Sci. 2007;62:1199–1203.PubMedGoogle Scholar
  14. 14.
    Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23:842–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Ogami M, Ikura Y, Ohsawa M, et al. Telomere shortening in human coronary artery diseases. Arterioscler Thromb Vasc Biol. 2004;24:546–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1999;96:14412–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Yehezkel S, Segev Y, Viegas-Péquignot E, Skorecki K, Selig S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet. 2008;17:2776–89.PubMedCrossRefGoogle Scholar
  18. 18.
    Maeda T, Guan JZ, Oyama J, Higuchi Y, Makino N. Aging-associated alteration in subtelomeric methylation in Parkinson’s disease. J Gerontol A Biol Sci Med Sci. 2009 64:949–955.PubMedCrossRefGoogle Scholar
  19. 19.
    Maeda T, Guan JZ, Higuchi Y, Oyama J, Makino N. Age-related alterations in subtelomeric methylation in sarcoidosis patients. J Gerontol A Biol Sci Med Sci. 2009 64:752–760.PubMedCrossRefGoogle Scholar
  20. 20.
    Yamaguchi H, Calado RT, Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352:1413–1424.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen W, Gardner JP, Kimura M, et al. Leukocyte telomere length is associated with HDL cholesterol levels: The Bogalusa heart study. Atherosclerosis. 2009;205:620–625PubMedCrossRefGoogle Scholar
  22. 22.
    Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov. 2006;5:577–584.PubMedCrossRefGoogle Scholar
  23. 23.
    van Overveld PG, Lemmers RJ, Sandkuijl LA, et al. Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet. 2003;35:315–317.PubMedCrossRefGoogle Scholar
  24. 24.
    Pedram M, Sprung CN, Gao Q, Lo AW, Reynolds GE, Murnane JP. Telomere position effect and silencing of transgenes near telomeres in the mouse. Mol Cell Biol. 2006;26:1865–1878.PubMedCrossRefGoogle Scholar
  25. 25.
    Blanco R, Muñoz P, Flores JM, Klatt P, Blasco MA. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev. 2007;21:206–220.PubMedCrossRefGoogle Scholar
  26. 26.
    Wu L, Multani AS, He H, et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell. 2006;126:49–62.PubMedCrossRefGoogle Scholar

Copyright information

© Serdi and Springer Verlag France 2011

Authors and Affiliations

  • Toyoki Maeda
    • 1
  • J. -I. Oyama
    • 2
  • M. Sasaki
    • 1
  • T. Arima
    • 3
  • N. Makino
    • 1
  1. 1.The Division of Molecular and Clinical Gerontology, the Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityOitaJapan
  2. 2.The Department of Cardiovascular, Respiratory, and Geriatric MedicineKyushu University Hospital at Beppu, Kyushu UniversityOitaJapan
  3. 3.Innovation of New Biomedical Engineering CenterTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations