Advertisement

The journal of nutrition, health & aging

, Volume 14, Issue 1, pp 37–44 | Cite as

Neurodegenerative dementia and Parkinsonism

  • Audrey GabelleEmail author
  • F. Portet
  • C. Berr
  • J. Touchon
Article

Abstract

Background

Dementia and Parkinsonism are two major neurodegenerative disorders. Accurate diagnosis can be difficult when patients have both syndromes because of a wide range of etiologies.

Objectives

To improve clinical diagnosis, we propose a disease classification based on the pathological proteins which are involved in the neuropathological disease process.

Design

Four neuropathological classes are proposed based on four major proteins, tau, Aβ, α-synuclein and TDP43: 1/ Tauopathy and amyloidopathy with possible Parkinsonism, 2/ Tauopathy with predominant Parkinsonism, 3/ Synucleinopathies with cognitive impairment/dementia and 4/ The TAR DNA binding protein 43 (TDP-43). This classification raises certain questions in clinical practice due to intriguing overlaps between clinical presentations despite the same pathological protein being involved.

Conclusion

The development of molecular and pathological protein research in neurodegenerative disorders can help classify the clinical association of dementia and Parkinsonism and improve therapeutic strategies against proteins involved in the degenerative process.

Key words

Parkinsonism Alzheimer disease frontotemporal lobar degeneration lewy body dementia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Selkoe DJ. Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 1994;53(5):438–447.CrossRefPubMedGoogle Scholar
  2. 2.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297(5580):353–356.CrossRefPubMedGoogle Scholar
  3. 3.
    Small DH, Mok SS, Bornstein JC. Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2001;2(8):595–598.CrossRefPubMedGoogle Scholar
  4. 4.
    Delacourte A, Sergeant N, Wattez A, et al. Tau aggregation in the hippocampal formation: an ageing or a pathological process? Exp Gerontol 2002;37(10–11):1291–1296.CrossRefPubMedGoogle Scholar
  5. 5.
    Rowan MJ, Klyubin I, Wang Q, Hu NW, Anwyl R. Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans 2007;35(Pt 5):1219–1223.PubMedGoogle Scholar
  6. 6.
    Ding H, Johnson GV. The last tangle of tau. J Alzheimers Dis 2008;14(4):441–447.PubMedGoogle Scholar
  7. 7.
    Castellani RJ, Nunomura A, Lee HG, Perry G, Smith MA. Phosphorylated tau: toxic, protective, or none of the above. J Alzheimers Dis 2008;14(4):377–383.PubMedGoogle Scholar
  8. 8.
    Peng X, Tehranian R, Dietrich P, Stefanis L, Perez RG. Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells; 2005.Google Scholar
  9. 9.
    Tehranian R, Montoya SE, Van Laar AD, Hastings TG, Perez RG. Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J Neurochem 2006;99(4):1188–1196.CrossRefPubMedGoogle Scholar
  10. 10.
    Beyer K, Ariza A. Protein aggregation mechanisms in synucleinopathies: commonalities and differences. J Neuropathol Exp Neurol 2007;66(11):965–974.CrossRefPubMedGoogle Scholar
  11. 11.
    Engelender S. Ubiquitination of alpha-synuclein and autophagy in Parkinson’s disease. Autophagy 2008;4(3):372–374.PubMedGoogle Scholar
  12. 12.
    Martinez-Vicente M, Talloczy Z, Kaushik S, et al. Dopamine-modified alphasynuclein blocks chaperone-mediated autophagy. J Clin Invest 2008;118(2):777–788.PubMedGoogle Scholar
  13. 13.
    Kawahara K, Hashimoto M, Bar-On P, et al. alpha-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease. J Biol Chem 2008;283(11):6979–6987.CrossRefPubMedGoogle Scholar
  14. 14.
    Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314(5796):130–133.CrossRefPubMedGoogle Scholar
  15. 15.
    Buratti E, Brindisi A, Pagani F, Baralle FE. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am J Hum Genet 2004;74(6):1322–1325.CrossRefPubMedGoogle Scholar
  16. 16.
    Mercado PA, Ayala YM, Romano M, Buratti E, Baralle FE. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res 2005;33(18):6000–6010.CrossRefPubMedGoogle Scholar
  17. 17.
    Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW. Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 2007;4:7.CrossRefPubMedGoogle Scholar
  18. 18.
    Baker M, Mackenzie IR, Pickering-Brown SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006;442(7105):916–919.CrossRefPubMedGoogle Scholar
  19. 19.
    Boeve BF, Baker M, Dickson DW, et al. Frontotemporal dementia and parkinsonism associated with the IVS1+1G->A mutation in progranulin: a clinicopathologic study. Brain 2006;129(Pt 11):3103–3114.CrossRefPubMedGoogle Scholar
  20. 20.
    Gass J, Cannon A, Mackenzie IR, et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 2006;15(20):2988–3001.CrossRefPubMedGoogle Scholar
  21. 21.
    Mackenzie IR, Baker M, Pickering-Brown S, et al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 2006;129(Pt 11):3081–3090.CrossRefPubMedGoogle Scholar
  22. 22.
    He Z, Bateman A. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 2003;81(10):600–612.CrossRefPubMedGoogle Scholar
  23. 23.
    Eriksen JL, Mackenzie IR. Progranulin: normal function and role in neurodegeneration. J Neurochem 2008;104(2):287–297.PubMedGoogle Scholar
  24. 24.
    Van Damme P, Van Hoecke A, Lambrechts D, et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 2008;181(1):37–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Merello M, Sabe L, Teson A, et al. Extrapyramidalism in Alzheimer’s disease: prevalence, psychiatric, and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1994;57(12):1503–1509.CrossRefPubMedGoogle Scholar
  26. 26.
    Scarmeas N, Hadjigeorgiou GM, Papadimitriou A, et al. Motor signs during the course of Alzheimer disease. Neurology 2004;63(6):975–982.PubMedGoogle Scholar
  27. 27.
    Tsolaki M, Kokarida K, Iakovidou V, Stilopoulos E, Meimaris J, Kazis A. Extrapyramidal symptoms and signs in Alzheimer’s disease: prevalence and correlation with the first symptom. Am J Alzheimers Dis Other Demen 2001;16(5):268–278.CrossRefPubMedGoogle Scholar
  28. 28.
    Galvin JE, Pollack J, Morris JC. Clinical phenotype of Parkinson disease dementia. Neurology 2006;67(9):1605–1611.CrossRefPubMedGoogle Scholar
  29. 29.
    Brodaty H, Sachdev P, Berman K, et al. Do extrapyramidal features in Alzheimer patients treated with acetylcholinesterase inhibitors predict disease progression? Aging Ment Health 2007;11(4):451–456.CrossRefPubMedGoogle Scholar
  30. 30.
    Scarmeas N, Albert M, Brandt J, et al. Motor signs predict poor outcomes in Alzheimer disease. Neurology 2005;64(10):1696–1703.CrossRefPubMedGoogle Scholar
  31. 31.
    Stern RG, Mohs RC, Davidson M, et al. A longitudinal study of Alzheimer’s disease: measurement, rate, and predictors of cognitive deterioration. Am J Psychiatry 1994;151(3):390–396.PubMedGoogle Scholar
  32. 32.
    Vieregge P, Ziemens G, Freudenberg M, Piosinski A, Muysers A, Schulze B. Extrapyramidal features in advanced Down’s syndrome: clinical evaluation and family history. J Neurol Neurosurg Psychiatry 1991;54(1):34–38.CrossRefPubMedGoogle Scholar
  33. 33.
    Wenning GK, Litvan I, Jankovic J, et al. Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry 1998;64(2):184–189.CrossRefPubMedGoogle Scholar
  34. 34.
    Fitzgerald DB, Drago V, Jeong Y, Chang YL, White KD, Heilman KM. Asymmetrical alien hands in corticobasal degeneration. Mov Disord 2007;22(4):581–584.CrossRefPubMedGoogle Scholar
  35. 35.
    Koyama M, Yagishita A, Nakata Y, Hayashi M, Bandoh M, Mizutani T. Imaging of corticobasal degeneration syndrome. Neuroradiology 2007;49(11):905–912.CrossRefPubMedGoogle Scholar
  36. 36.
    Borroni B, Garibotto V, Agosti C, et al. White matter changes in corticobasal degeneration syndrome and correlation with limb apraxia. Arch Neurol 2008;65(6):796–801.CrossRefPubMedGoogle Scholar
  37. 37.
    Huang KJ, Lu MK, Kao A, Tsai CH. Clinical, imaging and electrophysiological studies of corticobasal degeneration. Acta Neurol Taiwan 2007;16(1):13–21.PubMedGoogle Scholar
  38. 38.
    Troost BT, Daroff RB. The ocular motor defects in progressive supranuclear palsy. Ann Neurol 1977;2(5):397–403.CrossRefPubMedGoogle Scholar
  39. 39.
    Garbutt S, Riley DE, Kumar AN, Han Y, Harwood MR, Leigh RJ. Abnormalities of optokinetic nystagmus in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2004;75(10):1386–1394.CrossRefPubMedGoogle Scholar
  40. 40.
    Golbe LI, Davis PH, Lepore FE. Eyelid movement abnormalities in progressive supranuclear palsy. Mov Disord 1989;4(4):297–302.CrossRefPubMedGoogle Scholar
  41. 41.
    Dubois B, Slachevsky A, Pillon B, Beato R, Villalponda JM, Litvan I. “Applause sign” helps to discriminate PSP from FTD and PD. Neurology 2005;64(12):2132–2133.CrossRefPubMedGoogle Scholar
  42. 42.
    Wu LJ, Sitburana O, Davidson A, Jankovic J. Applause sign in Parkinsonian disorders and Huntington’s disease. Mov Disord 2008;23(16):2307–2311.CrossRefPubMedGoogle Scholar
  43. 43.
    Blain CR, Barker GJ, Jarosz JM, et al. Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology 2006;67(12):2199–2205.CrossRefPubMedGoogle Scholar
  44. 44.
    Oba H, Yagishita A, Terada H, et al. New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology 2005;64(12):2050–2055.CrossRefPubMedGoogle Scholar
  45. 45.
    Josephs KA, Whitwell JL, Dickson DW, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging 2008;29(2):280–289.CrossRefPubMedGoogle Scholar
  46. 46.
    Rizzo G, Martinelli P, Manners D, et al. Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson’s disease. Brain 2008;131(Pt 10):2690–2700.CrossRefPubMedGoogle Scholar
  47. 47.
    Borroni B, Gardoni F, Parnetti L, et al. Pattern of Tau forms in CSF is altered in progressive supranuclear palsy. Neurobiol Aging 2009;30(1):34–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol 1997;41(6):706–715.CrossRefPubMedGoogle Scholar
  49. 49.
    Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998;393(6686):702–705.CrossRefPubMedGoogle Scholar
  50. 50.
    Spillantini MG, Crowther RA, Kamphorst W, Heutink P, van Swieten JC. Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau. Am J Pathol 1998;153(5):1359–1363.PubMedGoogle Scholar
  51. 51.
    Wszolek ZK, Slowinski J, Golan M, Dickson DW. Frontotemporal dementia and parkinsonism linked to chromosome 17. Folia Neuropathol 2005;43(4):258–270.PubMedGoogle Scholar
  52. 52.
    Gasparini L, Terni B, Spillantini MG. Frontotemporal dementia with tau pathology. Neurodegener Dis 2007;4(2–3):236–253.CrossRefPubMedGoogle Scholar
  53. 53.
    Wszolek ZK, Krygowska-Wajs A, Barcikowska M. [Fronto-temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17): clinical criteria]. Neurol Neurochir Pol 2003;37(1):173–184.PubMedGoogle Scholar
  54. 54.
    Aarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sorensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol 2003;60(3):387–392.CrossRefPubMedGoogle Scholar
  55. 55.
    Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 2007;130(Pt 7):1787–1798.CrossRefPubMedGoogle Scholar
  56. 56.
    Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 2007;22(12):1689–1707; quiz 837.CrossRefPubMedGoogle Scholar
  57. 57.
    Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord 2005;20(10):1255–1263.CrossRefPubMedGoogle Scholar
  58. 58.
    Levy G, Tang MX, Cote LJ, et al. Motor impairment in PD: relationship to incident dementia and age. Neurology 2000;55(4):539–544.PubMedGoogle Scholar
  59. 59.
    Aarsland D, Kvaloy JT, Andersen K, et al. The effect of age of onset of PD on risk of dementia. J Neurol 2007;254(1):38–45.CrossRefPubMedGoogle Scholar
  60. 60.
    Rahkonen T, Eloniemi-Sulkava U, Rissanen S, Vatanen A, Viramo P, Sulkava R. Dementia with Lewy bodies according to the consensus criteria in a general population aged 75 years or older. J Neurol Neurosurg Psychiatry 2003;74(6):720–724.CrossRefPubMedGoogle Scholar
  61. 61.
    Lippa CF, Duda JE, Grossman M, et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 2007;68(11):812–819.CrossRefPubMedGoogle Scholar
  62. 62.
    Kertesz A, Kawarai T, Rogaeva E, et al. Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology 2000;54(4):818–827.PubMedGoogle Scholar
  63. 63.
    Rosso SM, Kamphorst W, de Graaf B, et al. Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22. Brain 2001;124(Pt 10):1948–1957.CrossRefPubMedGoogle Scholar
  64. 64.
    Savioz A, Riederer BM, Heutink P, et al. Tau and neurofilaments in a family with frontotemporal dementia unlinked to chromosome 17q21–22. Neurobiol Dis 2003;12(1):46–55.CrossRefPubMedGoogle Scholar
  65. 65.
    van der Zee J, Le Ber I, Maurer-Stroh S, et al. Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Hum Mutat 2007;28(4):416.PubMedGoogle Scholar
  66. 66.
    Josephs KA, Ahmed Z, Katsuse O, et al. Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J Neuropathol Exp Neurol 2007;66(2):142–151.CrossRefPubMedGoogle Scholar
  67. 67.
    Le Ber I, van der Zee J, Hannequin D, et al. Progranulin null mutations in both sporadic and familial frontotemporal dementia. Hum Mutat 2007;28(9):846–855.CrossRefPubMedGoogle Scholar
  68. 68.
    Le Ber I, Camuzat A, Hannequin D, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 2008;131(Pt 3):732–746.CrossRefPubMedGoogle Scholar
  69. 69.
    Mesulam M, Johnson N, Krefft TA, et al. Progranulin mutations in primary progressive aphasia: the PPA1 and PPA3 families. Arch Neurol 2007;64(1):43–47.CrossRefPubMedGoogle Scholar
  70. 70.
    Mukherjee O, Pastor P, Cairns NJ, et al. HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol 2006;60(3):314–322.CrossRefPubMedGoogle Scholar
  71. 71.
    Benussi L, Binetti G, Sina E, et al. A novel deletion in progranulin gene is associated with FTDP-17 and CBS. Neurobiol Aging 2008;29(3):427–435.CrossRefPubMedGoogle Scholar
  72. 72.
    Masellis M, Momeni P, Meschino W, et al. Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain 2006;129(Pt 11):3115–3123.CrossRefPubMedGoogle Scholar
  73. 73.
    Snowden JS, Pickering-Brown SM, Mackenzie IR, et al. Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. Brain 2006;129(Pt 11):3091–3102.CrossRefPubMedGoogle Scholar
  74. 74.
    Rademakers R, Baker M, Gass J, et al. Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurol 2007;6(10):857–768.CrossRefPubMedGoogle Scholar
  75. 75.
    Whitwell JL, Jack CR, Jr., Baker M, et al. Voxel-based morphometry in frontotemporal lobar degeneration with ubiquitin-positive inclusions with and without progranulin mutations. Arch Neurol 2007;64(3):371–376.CrossRefPubMedGoogle Scholar
  76. 76.
    Kelley BJ, Haidar W, Boeve BF, et al. Prominent phenotypic variability associated with mutations in Progranulin. Neurobiol Aging 2007.Google Scholar
  77. 77.
    Beck J, Rohrer JD, Campbell T, et al. A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain 2008;131(Pt 3):706–720.CrossRefPubMedGoogle Scholar

Copyright information

© Serdi and Springer Verlag France 2010

Authors and Affiliations

  • Audrey Gabelle
    • 1
    • 2
    • 3
    • 5
    Email author
  • F. Portet
    • 1
    • 3
    • 4
  • C. Berr
    • 4
  • J. Touchon
    • 1
    • 3
    • 4
  1. 1.Service de NeurologieCHRU MontpellierMontpellier Cedex 5France
  2. 2.Unité CNRS UPR1142Institut de Génétique HumaineMontpellierFrance
  3. 3.Faculté de MédecineUniversité Montpellier IMontpellierFrance
  4. 4.Unité INSERM U888Hôpital La ColombièreMontpellierFrance
  5. 5.Service de Neurologie, CHRU MontpellierHôpital Gui de ChauliacMontpellier Cedex 5France

Personalised recommendations