Skip to main content
Log in

Distribution of Genes Related to Probiotic Effects Across Lacticaseibacillus rhamnosus Revealed by Population Structure

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The Gram-positive Lacticaseibacillus rhamnosus has been broadly reported as capable of exerting beneficial health effects. Bacterial genomic diversity may promote niche specialization, thus creating subpatterns within populations. As L. rhamnosus advantageous effects have been widely reported at strain level and few is known regarding the distribution of beneficial genes among L. rhamnosus strains, we investigated all publicly available genomes of Lactobacillus and Lacticaseibacillus genera to study the pangenome and general population structure of L. rhamnosus. Core genome multilocus sequence typing detected eight L. rhamnosus phylogroups (PG1 to PG8). L. rhamnosus harbors an open pangenome; PG1, PG3, PG4, and PG5 exhibited highly conserved gene distribution patterns. Genes significantly associated to the PG1, which comprises L. rhamnosus GG, are mainly phage-related. The adhesion operon spaCBA-srtC1 was found in 44 (24.7%) genomes; however, considering only the PG1, the prevalence was of 65%. In PG2 the spaCBA-srtC1 prevalence was of 43%. Nevertheless, both human and milk-derived strains harbored this operon. Further, two main types of bacteriocin clusters were found (Bact1 and Bact2). Bact1 predictions indicate the presence of garQ, encoding the class II bacteriocin garvieacin Q, that is mainly present in the closely related PG8A and a PG2 subcluster. PG2 harbors two distinct subclusters, harboring either spaCBA-srtC1 or Bact1. Our findings provide novel insights on the distribution of biotechnological relevant genes across L. rhamnosus population, uncovering intra-species patterns that may bring forth the development of more efficient probiotic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

All genomes are publicly available through NCBI – RefSeq.

References

  1. Pino A, Rapisarda AMC, Vitale SG, Cianci S, Caggia C, Randazzo CL, Cianci A (2021) A clinical pilot study on the effect of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 strain in women with vaginal dysbiosis. Sci Rep 11(1):2592. https://doi.org/10.1038/s41598-021-81931-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu Z, Liu F, Wang W et al (2020) Study of the alleviation effects of a combination of Lactobacillus rhamnosus and inulin on mice with colitis. Food Funct 11(5):3823–3837. https://doi.org/10.1039/c9fo02992c

    Article  CAS  PubMed  Google Scholar 

  3. Wang G, Jiao T, Xu Y et al (2020) Bifidobacterium adolescentis and Lactobacillus rhamnosus alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food Funct 11(7):6115–6127. https://doi.org/10.1039/c9fo02905b

    Article  CAS  PubMed  Google Scholar 

  4. Naqvi SSB, Nagendra V, Hofmeyr A (2018) Probiotic related Lactobacillus rhamnosus endocarditis in a patient with liver cirrhosis. IDCases 13:e00439. https://doi.org/10.1016/j.idcr.2018.e00439

    Article  CAS  PubMed  Google Scholar 

  5. Meini S, Laureano R, Fani L, Tascini C, Galano A, Antonelli A, Rossolini GM (2015) Breakthrough Lactobacillus rhamnosus GG bacteremia associated with probiotic use in an adult patient with severe active ulcerative colitis: case report and review of the literature. Infection 43(6):777–781. https://doi.org/10.1007/s15010-015-0798-2

    Article  PubMed  Google Scholar 

  6. Yelin I, Flett KB, Merakou C, Mehrotra P, Stam J, Snesrud E, Hinkle M, Lesho E, McGann P, McAdam AJ, Sandora TJ, Kishony R, Priebe GP (2019) Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med 25(11):1728–1732. https://doi.org/10.1038/s41591-019-0626-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Capurso L (2019) Thirty years of Lactobacillus rhamnosus GG: a review. J Clin Gastroenterol 53(Suppl 1):S1–S41. https://doi.org/10.1097/MCG.0000000000001170

    Article  CAS  PubMed  Google Scholar 

  8. Nivoliez A, Camares O, Paquet-Gachinat M, Bornes S, Forestier C, Veisseire P (2012) Influence of manufacturing processes on in vitro properties of the probiotic strain Lactobacillus rhamnosus Lcr35(R). J Biotechnol 160(3–4):236–241. https://doi.org/10.1016/j.jbiotec.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  9. Bhat MI, Singh VK, Sharma D, Kapila S, Kapila R (2019) Adherence capability and safety assessment of an indigenous probiotic strain Lactobacillus rhamnosus MTCC-5897. Microb Pathog 130:120–130. https://doi.org/10.1016/j.micpath.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  10. Bhat MI, Sowmya K, Kapila S, Kapila R (2020) Potential probiotic Lactobacillus rhamnosus (MTCC-5897) inhibits Escherichia coli impaired intestinal barrier function by modulating the host tight junction gene response. Probiotics Antimicrob Proteins 12(3):1149–1160. https://doi.org/10.1007/s12602-019-09608-8

    Article  CAS  PubMed  Google Scholar 

  11. Aleksandrzak-Piekarczyk T, Koryszewska-Baginska A, Bardowski J (2013) Genome sequence of the probiotic strain Lactobacillus rhamnosus (Formerly Lactobacillus casei) LOCK900. Genome Announc 1(4):e00640-e713. https://doi.org/10.1128/genomeA.00640-13

    Article  PubMed  PubMed Central  Google Scholar 

  12. Johnson BR, Klaenhammer TR (2014) Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Anton Leeuw J Microb 106(1):141–156. https://doi.org/10.1007/s10482-014-0171-y

    Article  CAS  Google Scholar 

  13. Zheng J, Wittouck S, Salvetti E et al (2020) A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  PubMed  Google Scholar 

  14. Bousmaha-Marroki L, Boutillier D, Marroki A, Grangette C (2021) In vitro anti-staphylococcal and anti-inflammatory abilities of Lacticaseibacillus rhamnosus from infant gut microbiota as potential probiotic against infectious women mastitis. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-021-09755-x

    Article  PubMed  Google Scholar 

  15. Lebeer S, Claes I, Tytgat HL et al (2012) Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78(1):185–193. https://doi.org/10.1128/AEM.06192-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guerin J, Burgain J, Francius G, El-Kirate-Chatel S, Beaussart A, Scher J, Gaiani C (2018) Adhesion of Lactobacillus rhamnosus GG surface biomolecules to milk proteins. Food Hydrocoll 82:296–303. https://doi.org/10.1016/j.foodhyd.2018.04.016

    Article  CAS  Google Scholar 

  17. Douillard FP, Rasinkangas P, von Ossowski I, Reunanen J, Palva A, de Vos WM (2014) Functional identification of conserved residues involved in Lactobacillus rhamnosus strain GG sortase specificity and pilus biogenesis. J Biol Chem 289(22):15764–15775. https://doi.org/10.1074/jbc.M113.542332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hegarty JW, Guinane CM, Ross RP, Hill C (2016) Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res 5:2587. https://doi.org/10.12688/f1000research.9615.1

  19. Zhao R, Lu Y, Ran J, Li G, Lei S, Zhu Y, Xu B (2020) Purification and characterization of bacteriocin produced by Lactobacillus rhamnosus zrx01. Food Biosci 38:100754. https://doi.org/10.1016/j.fbio.2020.100754

    Article  CAS  Google Scholar 

  20. Xu C, Fu Y, Liu F, Liu Z, Ma J, Jiang R, Song C, Jiang Z, Hou J (2021) Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. LWT 137:110338. https://doi.org/10.1016/j.lwt.2020.110338

    Article  CAS  Google Scholar 

  21. Tkhruni FN, Aghajanyan AE, Balabekyan TR, Khachatryan TV, Karapetyan KJ (2020) Characteristic of bacteriocins of Lactobacillus rhamnosus BTK 20–12 potential probiotic strain. Probiotics Antimicrob Proteins 12(2):716–724. https://doi.org/10.1007/s12602-019-09569-y

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira LC, Silveira AMM, Monteiro AS et al (2017) In silico prediction, in vitro antibacterial spectrum, and physicochemical properties of a putative bacteriocin produced by Lactobacillus rhamnosus Strain L156.4. Front Microbiol 8:876. https://doi.org/10.3389/fmicb.2017.00876

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sheppard SK, Guttman DS, Fitzgerald JR (2018) Population genomics of bacterial host adaptation. Nat Rev Genet 19(9):549–565. https://doi.org/10.1038/s41576-018-0032-z

    Article  CAS  PubMed  Google Scholar 

  24. Fitzgerald JR, Holden MT (2016) Genomics of natural populations of Staphylococcus aureus. Annu Rev Microbiol 70:459–478. https://doi.org/10.1146/annurev-micro-102215-095547

    Article  CAS  PubMed  Google Scholar 

  25. Matteoli FP, Passarelli-Araujo H, Pedrosa-Silva F, Olivares FL, Venancio TM (2020) Population structure and pangenome analysis of Enterobacter bugandensis uncover the presence of blaCTX-M-55, blaNDM-5 and blaIMI-1, along with sophisticated iron acquisition strategies. Genomics 112(2):1182–1191. https://doi.org/10.1016/j.ygeno.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  26. Moura A, Criscuolo A, Pouseele H et al (2016) Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol 2:16185. https://doi.org/10.1038/nmicrobiol.2016.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733-745. https://doi.org/10.1093/nar/gkv1189

    Article  CAS  PubMed  Google Scholar 

  28. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17(1):132. https://doi.org/10.1186/s13059-016-0997-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14(7):685–695. https://doi.org/10.1093/oxfordjournals.molbev.a025808

    Article  CAS  PubMed  Google Scholar 

  30. Paradis E, Claude J, Strimmer K (2004) APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290. https://doi.org/10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  31. Seppey M, Manni M, Zdobnov EM (2019) BUSCO: Assessing genome assembly and annotation completeness. Methods Mol Biol 1962:227–245. https://doi.org/10.1007/978-1-4939-9173-0_14

    Article  CAS  PubMed  Google Scholar 

  32. Maiden MC, van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy MD (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11(10):728–736. https://doi.org/10.1038/nrmicro3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Silva M, Machado MP, Silva DN et al (2018) chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom 4(3). https://doi.org/10.1099/mgen.0.000166

  34. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Page AJ, Taylor B, Delaney AJ, Seemann T, Keane JA, Harris SR (2016) SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2(4):e000056. https://doi.org/10.1099/mgen.0.000056

    Article  PubMed  PubMed Central  Google Scholar 

  36. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37(5):1530–1534. https://doi.org/10.1093/molbev/msaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47(W1):W256–W259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J (2019) Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 47(11):5539–5549. https://doi.org/10.1093/nar/gkz361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V (2016) Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 17(1):238. https://doi.org/10.1186/s13059-016-1108-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  42. Grant JR, Arantes AS, Stothard P (2012) Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics 13:202. https://doi.org/10.1186/1471-2164-13-202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arndt D, Grant JR, Marcu A, Sajed D, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16-21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20):6097–6100. https://doi.org/10.1093/nar/18.20.6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46(W1):W278–W281. https://doi.org/10.1093/nar/gky383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang CH, Li SW, Huang L, Watanabe K (2018) Identification and classification for the Lactobacillus casei group. Front Microbiol 9:1974. https://doi.org/10.3389/fmicb.2018.01974

    Article  PubMed  PubMed Central  Google Scholar 

  47. Song Y, Sun Z, Guo C et al (2016) Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods. Sci Rep 6:22704. https://doi.org/10.1038/srep22704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bao Q, Song Y, Xu H et al (2016) Multilocus sequence typing of Lactobacillus casei isolates from naturally fermented foods in China and Mongolia. J Dairy Sci 99(7):5202–5213. https://doi.org/10.3168/jds.2016-10857

    Article  CAS  PubMed  Google Scholar 

  49. Sun Z, Liu W, Song Y et al (2015) Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing. J Dairy Sci 98(5):2962–2972. https://doi.org/10.3168/jds.2014-9133

    Article  CAS  PubMed  Google Scholar 

  50. Zhou X, Yang B, Stanton C, Ross RP, Zhao J, Zhang H, Chen W (2020) Comparative analysis of Lactobacillus gasseri from Chinese subjects reveals a new species-level taxa. BMC Genomics 21(1):119. https://doi.org/10.1186/s12864-020-6527-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee JY, Han GG, Kim EB, Choi YJ (2017) Comparative genomics of Lactobacillus salivarius strains focusing on their host adaptation. Microbiol Res 205:48–58. https://doi.org/10.1016/j.micres.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  52. Kim KH, Chun BH, Baek JH, Roh SW, Lee SH, Jeon CO (2020) Genomic and metabolic features of Lactobacillus sakei as revealed by its pan-genome and the metatranscriptome of kimchi fermentation. Food Microbiol 86:103341. https://doi.org/10.1016/j.fm.2019.103341

    Article  CAS  PubMed  Google Scholar 

  53. Ceapa C, Davids M, Ritari J et al (2016) The variable regions of Lactobacillus rhamnosus genomes reveal the dynamic evolution of metabolic and host-adaptation repertoires. Genome Biol Evol 8(6):1889–1905. https://doi.org/10.1093/gbe/evw123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D (2020) Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet 36(2):132–145. https://doi.org/10.1016/j.tig.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  55. Lebeer S, Bron PA, Marco ML et al (2018) Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol 49:217–223. https://doi.org/10.1016/j.copbio.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  56. Vargas Garcia CE, Petrova M, Claes IJ et al (2015) Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages. Appl Environ Microbiol 81(6):2050–2062. https://doi.org/10.1128/AEM.03949-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Douillard FP, Ribbera A, Jarvinen HM et al (2013) Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl Environ Microbiol 79(6):1923–1933. https://doi.org/10.1128/AEM.03467-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Douillard FP, Ribbera A, Xiao K et al (2016) Polymorphisms, chromosomal rearrangements, and mutator phenotype development during experimental evolution of Lactobacillus rhamnosus GG. Appl Environ Microbiol 82(13):3783–3792. https://doi.org/10.1128/AEM.00255-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin R, Chamignon C, Mhedbi-Hajri N et al (2019) The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci Rep 9(1):5398. https://doi.org/10.1038/s41598-019-41738-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rasinkangas P, Tytgat HLP, Ritari J et al (2020) Characterization of highly mucus-adherent non-GMO derivatives of Lacticaseibacillus rhamnosus GG. Front Bioeng Biotechnol 8:1024. https://doi.org/10.3389/fbioe.2020.01024

    Article  PubMed  PubMed Central  Google Scholar 

  61. Collins FWJ, O’Connor PM, O’Sullivan O et al (2017) Bacteriocin gene-trait matching across the complete Lactobacillus pan-genome. Sci Rep 7(1):3481. https://doi.org/10.1038/s41598-017-03339-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Surachat K, Sangket U, Deachamag P, Chotigeat W (2017) In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases. PLoS One 12(8):e0183548. https://doi.org/10.1371/journal.pone.0183548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gontijo MTP, Silva JS, Vidigal PMP, Martin JGP (2020) Phylogenetic distribution of the bacteriocin repertoire of lactic acid bacteria species associated with artisanal cheese. Food Res Int 128:108783. https://doi.org/10.1016/j.foodres.2019.108783

    Article  CAS  PubMed  Google Scholar 

  64. Kuo YC, Liu CF, Lin JF et al (2013) Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334. Appl Microbiol Biotechnol 97(1):237–246. https://doi.org/10.1007/s00253-012-4149-2

    Article  CAS  PubMed  Google Scholar 

  65. Hu CB, Malaphan W, Zendo T, Nakayama J, Sonomoto K (2010) Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol 76(13):4542–4545. https://doi.org/10.1128/AEM.02264-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herbin S, Mathieu F, Brule F, Branlant C, Lefebvre G, Lebrihi A (1997) Characteristics and genetic determinants of bacteriocin activities produced by Carnobacterium piscicola CP5 isolated from cheese. Curr Microbiol 35(6):319–326. https://doi.org/10.1007/s002849900262

    Article  CAS  PubMed  Google Scholar 

  67. Jacquet T, Cailliez-Grimal C, Francius G et al (2012) Antibacterial activity of class IIa bacteriocin Cbn BM1 depends on the physiological state of the target bacteria. Res Microbiol 163(5):323–331. https://doi.org/10.1016/j.resmic.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  68. Tosukhowong A, Zendo T, Visessanguan W et al (2012) Garvieacin Q, a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Appl Environ Microbiol 78(5):1619–1623. https://doi.org/10.1128/AEM.06891-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Florez AB, Reimundo P, Delgado S, Fernández E, Alegria A, Guijarro JA, Mayo B (2012) Genome sequence of Lactococcus garvieae IPLA 31405, a bacteriocin-producing, tetracycline-resistant strain isolated from a raw-milk cheese. J Bacteriol 194(18):5118–5119. https://doi.org/10.1128/JB.00975-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for LDS doctoral fellowship, Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for FPM post-doctoral fellowship, and Conselho Nacional de Pesquisa Científica (CNPq) for ACMA research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Lorena Dutra-Silva: conceptualization, writing—original draft, methodology, and investigation. Filipe Pereira Matteoli: writing—final draft, methodology, data curation, investigation, and visualization. Ana Carolina Maisonnave Arisi: conceptualization, supervision, and writing—review and editing.

Corresponding author

Correspondence to Filipe P. Matteoli.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra-Silva, L., Matteoli, F.P. & Arisi, A.C.M. Distribution of Genes Related to Probiotic Effects Across Lacticaseibacillus rhamnosus Revealed by Population Structure. Probiotics & Antimicro. Prot. 15, 548–557 (2023). https://doi.org/10.1007/s12602-021-09868-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09868-3

Keywords

Navigation