Skip to main content

Advertisement

Log in

Probiotic Lactobacillus johnsonii BS15 Prevents Memory Dysfunction Induced by Chronic High-Fluorine Intake through Modulating Intestinal Environment and Improving Gut Development

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In recent years, the influence of chronic fluorosis on the brain has been widely reported. Our study aimed to demonstrate the potential mechanism underlying the impairment of memory function by excessive fluorine intake. We also evaluated whether improvement of intestinal microflora could be a potential therapy to prevent the negative influences from the perspective of gut-brain axis. Male ICR mice were randomly divided into three groups and administered with either phosphate buffered saline (PBS) (Control and F groups) or Lactobacillus johnsonii BS15 (FP group; daily amounts of 1 × 109 CFU/mL), a probiotic strain, by oral gavage throughout a 98-day experimental period. Sodium fluoride (100 mg/L) was added to the drinking water of the F and FP groups. Animals were sacrificed for sampling with or without water avoidance stress (WAS) at two phases of the experiment and behavioral tests including T-maze test and passive avoidance test were also performed. Based on the results of behavioral tests, probiotic reversed the fluorine-induced memory dysfunction. In addition, L. johnsonii BS15 also increased the antioxidant capacities (serum and hippocampal tissue) and hippocampal synaptic plasticity-related mRNA expression after excessive fluoride ingestion. Moreover, the increased colonization of L. johnsonii BS15 also protected the small intestines from the damages of growth performance, visceral indexes, intestinal development, digestive, and secretory functions by changing the structure of the microflora and then improving intestinal permeability and integrity. L. johnsonii BS15 also improved the ability of flourosis mice against psychological stress indicated by the changes in behavioral tasks, hippocampal antioxidant levels, and synaptic plasticity-related mRNA expressions. Lactobacillus johnsonii BS15 intake appears as a promising way to ameliorate fluorine-induced memory dysfunction, especially under psychological stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Singh B, Gaur S, Garg VK (2007) Fluoride in drinking water and human urine in southern Haryana, India. J Hazard Mater 144(1–2):147–151. https://doi.org/10.1016/j.jhazmat.2006.10.010

    Article  CAS  Google Scholar 

  2. Meenakshi MRC (2006) Fluoride in drinking water and its removal. J Hazard Mater 137(1):456–463. https://doi.org/10.1016/j.jhazmat.2006.02.024

    Article  CAS  Google Scholar 

  3. WHO (1987) Guidelines for drinking-water quality, volume 2: health criteria and other supporting information. Sci Total Environ 61:274. https://doi.org/10.1016/0048-9697(87)90388-3

    Article  Google Scholar 

  4. Jelenko I, Pokorny B (2010) Historical biomonitoring of fluoride pollution by determining fluoride contents in roe deer (Capreolus capreolus L.) antlers and mandibles in the vicinity of the largest Slovene thermal power plant. Sci Total Environ 409(2):430–438. https://doi.org/10.1016/j.scitotenv.2010.10.012

    Article  CAS  Google Scholar 

  5. Zemek F, Herman M, Kierdorf H, Kierdorf U, Sedlácek F (2006) Spatial distribution of dental fluorosis in roe deer (Capreolus capreolus) from North Bohemia (Czech Republic) and its relationships with environmental factors. Sci Total Environ 370(2–3):491–505. https://doi.org/10.1016/j.scitotenv.2006.04.027

    Article  CAS  Google Scholar 

  6. Gui CZ, Ran LY, Li JP, Guan ZZ (2010) Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis. Neurotoxicol Teratol 32(5):536–541. https://doi.org/10.1016/j.ntt.2010.03.010

    Article  CAS  Google Scholar 

  7. Queste A, Lacombe M, Hellmeier W, Hillermann F, Bortulussi B, Kaup M, Ott K, Mathys W (2001) High concentrations of fluoride and boron in drinking water wells in the muenster region-results of a preliminary investigation. Int J Hyg Environ Health 203(3):221–224. https://doi.org/10.1078/S1438-4639(04)70032-2

    Article  CAS  Google Scholar 

  8. Dhar V, Bhatnagar M (2009) Physiology and toxicity of fluoride. Indian J Dent Res 20(3):350–355. https://doi.org/10.4103/0970-9290.57379

    Article  Google Scholar 

  9. Teotia M, Teotia SPS, Singh KP (1998) Endemic chronic fluoride toxicity and dietary calcium deficiency interaction syndromes of metabolic bone disease and deformities in India: year 2000. Indian J Pediatr 65(3):371–381. https://doi.org/10.1007/BF02761130

    Article  CAS  Google Scholar 

  10. Bouaziz H, Ketata S, Jammoussi K, Boudawara T, Ayadi FM, Ellouze F, Zeghal N (2006) Effects of sodium fluoride on hepatic toxicity in adult mice and their suckling pups. Pestic Biochem Physiol 86(3):124–130. https://doi.org/10.1016/j.pestbp.2006.02.004

    Article  CAS  Google Scholar 

  11. Spittle B (1994) Psychopharmacology of fluoride. Int Clin Psychopharmacol 9(2):79–82. https://doi.org/10.1097/00004850-199400920-00002

    Article  CAS  Google Scholar 

  12. Zhu W, Zhang J, Zhang Z (2011) Effects of fluoride on synaptic membrane fluidity and PSD-95 expression level in rat hippocampus. Biol Trace Elem Res 139(2):197–203. https://doi.org/10.1007/s12011-010-8654-9

    Article  CAS  Google Scholar 

  13. Liu YJ, Guan ZZ, Gao Q, Pei JJ (2011) Increased level of apoptosis in rat brains and SH-SY5Y cells exposed to excessive fluoride—a mechanism connected with activating JNK phosphorylation. Toxicol Lett 204(2–3):183–189. https://doi.org/10.1016/j.toxlet.2011.04.030

    Article  CAS  Google Scholar 

  14. Choi AL, Zhang Y, Sun G, Bellinger DC, Wang K, Yang XJ, Li JS, Zheng Q, Fu Y, Grandjean P (2015) Association of lifetime exposure to fluoride and cognitive functions in Chinese children: a pilot study. Neurotoxicol Teratol 47:96–101. https://doi.org/10.1016/j.ntt.2014.11.001

    Article  CAS  Google Scholar 

  15. Lee YY, Chua ASB (2011) Influence of gut microbes on the gut-brain axis. J Neurogastroenterol Motil 17(4):427–429. https://doi.org/10.5056/jnm.2011.17.4.427

    Article  Google Scholar 

  16. Mayer EA, Tillisch K, Bradesi S (2006) Review article: modulation of the brain–gut axis as a therapeutic approach in gastrointestinal disease. Aliment Pharmacol Ther 24(6):919–933. https://doi.org/10.1111/j.1365-2036.2006.03078.x

    Article  CAS  Google Scholar 

  17. Dong YT, Wang Y, Wei N, Zhang QF, Guan ZZ (2015) Deficit in learning and memory of rats with chronic fluorosis correlates with the decreased expressions of M1 and M3 muscarinic acetylcholine receptors. Arch Toxicol 89(11):1981–1991. https://doi.org/10.1007/s00204-014-1408-2

    Article  CAS  Google Scholar 

  18. Tropini C, Earle KA, Huang KC, Sonnenburg JL (2017) The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21(4):433–442. https://doi.org/10.1016/j.chom.2017.03.010

    Article  CAS  Google Scholar 

  19. Pellegrini C, Antonioli L, Colucci R, Blandizzi C, Fornai M (2018) Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol 136(3):345–361. https://doi.org/10.1007/s00401-018-1856-5

    Article  CAS  Google Scholar 

  20. Foster JA (2016) Gut microbiome and behavior focus on neuroimmune interactions. Int Rev Neurobiol 131:49–65. https://doi.org/10.1016/bs.irn.2016.07.005

    Article  CAS  Google Scholar 

  21. Hoban AE, Moloney RD, Golubeva AV, McVey Neufeld KA, O’Sullivan O, Patterson E, Stanton C, Dinan TG, Clarke G, Cryan JF (2016) Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 339:463–477. https://doi.org/10.1016/j.neuroscience.2016.10.003

    Article  CAS  Google Scholar 

  22. Suda Y, Villena J, Takahashi Y, Hosoya S, Tomosada Y, Tsukida K, Shimazu T, Aso H, Tohno M, Ishida M, Makino S, Lkegami S, Kitazawa H (2014) Immunobiotic Lactobacillus jensenii as immune-health promoting factor to improve growth performance and productivity in post-weaning pigs. BMC Immunol 15:24. https://doi.org/10.1186/1471-2172-15-24

    Article  Google Scholar 

  23. Maldonado NC, Chiaraviglio J, Bru E, De Chazal L, Santos V, Nader-Macías MEF (2018) Effect of milk fermented with lactic acid bacteria on diarrheal incidence, growth performance and microbiological and blood profiles of newborn dairy calves. Probiotics Antimicrob Proteins 10(4):668–676. https://doi.org/10.1007/s12602-017-9308-4

    Article  CAS  Google Scholar 

  24. Qing X, Zeng D, Wang H, Ni X, Liu L, Lai J, Khalique A, Pan K, Jing B (2017) Preventing subclinical necrotic enteritis through Lactobacillus johnsonii BS15 by ameliorating lipid metabolism and intestinal microflora in broiler chickens. AMB Express 7(1):139. https://doi.org/10.1186/s13568-017-0439-5

    Article  CAS  Google Scholar 

  25. Xin J, Zeng D, Wang H, Ni X, Yi D, Pan K, Jing B (2014) Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl Microbiol Biotechnol 98(15):6817–6829. https://doi.org/10.1007/s00253-014-5752-1

    Article  CAS  Google Scholar 

  26. Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B (2017) Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front Microbiol 8:1073. https://doi.org/10.3389/fmicb.2017.01073

    Article  Google Scholar 

  27. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, Macqueen G, Sherman PM (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3):307–317. https://doi.org/10.1136/gut.2009.202515

    Article  Google Scholar 

  28. Deacon RMJ, Rawlins JNP (2006) T-maze test alternation in the rodent. Nat Protoc 1(1):7–12. https://doi.org/10.1038/nprot.2006.2

    Article  Google Scholar 

  29. Chen X, Cai F, Guo S, Ding F, He Y, Wu J, Liu C (2014) Protective effect of flos puerariae extract following acute alcohol intoxication in mice. Alcohol Clin Exp Res 38(7):1839–1846. https://doi.org/10.1111/acer.12437

    Article  Google Scholar 

  30. Upreti RK, Kannan A (2005) Influence of fluoride on rat intestinal bacteria and epithelial cells. BVAAP 13(2):132–137

  31. Johansson MEV, Phillipson M, Petersson J, Velcich A, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105(39):15064–15069. https://doi.org/10.1073/pnas.0803124105

    Article  Google Scholar 

  32. Audie JP, Janin A, Porchet N, Copin MC, Gosselin B, Aubert JP (1993) Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem 41(10):1479–1485. https://doi.org/10.1177/41.10.8245407

    Article  CAS  Google Scholar 

  33. Kandori H, Hirayama K, Takeda M, Doi K (1996) Histochemical, lectin-histochemical and morphometrical characteristics of intestinal goblet cells of germfree and conventional mice. Exp Anim 45(2):155–160. https://doi.org/10.1538/expanim.45.155

    Article  CAS  Google Scholar 

  34. Becker S, Oelschlaeger TA, Wullaert A, Vlantis K, Pasparakis M, Wehkamp J, Stange EF, Gersemann M (2013) Bacteria regulate intestinal epithelial cell differentiation factors both in vitro and in vivo. PLoS One 8(2):e55620. https://doi.org/10.1371/journal.pone.0055620

    Article  CAS  Google Scholar 

  35. La Fata G, Weber P, Mohajeri MH (2017) Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrob Proteins 10(1):11–21. https://doi.org/10.1007/s12602-017-9322-6

    Article  CAS  Google Scholar 

  36. Mao Y, Li JJ, Liu Y, Dong W, Pang P, Deng ZB (2017) Imbalance of intestinal immune function in piglets infected by porcine circovirus type 2 during the fetal period. Acta Vet Hung 65(1):135–146. https://doi.org/10.1556/004.2017.014

    Article  CAS  Google Scholar 

  37. Meijers BKI, Evenrpoel P (2011) The gut-kidney axis:indoxyl sulfate, ρ-cresyl sulfate and CKD progression. Nephrol Dial Transplant 26(3):759–761. https://doi.org/10.1093/ndt/gfq818

    Article  CAS  Google Scholar 

  38. Bodera P, Chcialowski A (2009) Immunomodulatory effect of probiotic bacteria. Recent Patents Inflamm Allergy Drug Discov 3(1):58–64. https://doi.org/10.2174/187221309787158461

    Article  CAS  Google Scholar 

  39. Sonnenberg GF, Artis D (2019) Novel connections and precision approaches. Nat Rev Immunol 19(2):75–76. https://doi.org/10.1038/s41577-018-0114-3

    Article  CAS  Google Scholar 

  40. Mountzouris KC, Tsitrsikos P, Palamidi I, Arvaniti A, Mohnl M, Schatzmayr G, Fegeros K (2010) Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult Sci 89(1):58–67. https://doi.org/10.3382/ps.2009-00308

    Article  CAS  Google Scholar 

  41. Baum B, Liebler-Tenorio EM, Enss ML, Pohlenz JF, Breves G (2002) Saccharomyces boulardii and bacillus cereus var. Toyoi influence the morphology and the mucins of the intestine of pigs. Z Gastroenterol 40(5):277–284. https://doi.org/10.1055/s-2002-30116

    Article  CAS  Google Scholar 

  42. Mullenix PJ, Denbesten PK, Schunior A, Kernan WJ (1995) Neurotoxicity of sodium fluoride in rats. Neurotoxicol Teratol 17:169–177

    Article  CAS  Google Scholar 

  43. Chagwedera DN, Ang QY, Bisanz JE, Leong YA, Ganeshan K, Cai J, Patterson AD, Turnbaugh PJ, Chawla A (2019) Nutrient sensing in CD11c cells alters the gut microbiota to regulate food intake and body mass. Cell Metab 30(2):364–373. https://doi.org/10.1016/j.cmet.2019.05.002

    Article  CAS  Google Scholar 

  44. Suo C, Yin Y, Wang X, Lou X, Song D, Wang X, Gu Q (2012) Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet Res 8:89. https://doi.org/10.1186/1746-6148-8-89

    Article  Google Scholar 

  45. Che C, Pang X, Hua X, Zhang B, Shen J, Zhu J, Wei H, Sun L, Chen P, Cui L, Zhao L, Yang Q (2009) Effects of human fecal flora on intestinal morphology and mucosal immunity in human flora-associated piglet. Scand J Immunol 69(3):223–233. https://doi.org/10.1111/j.1365-3083.2008.02211.x

    Article  CAS  Google Scholar 

  46. Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S (2011) Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Arch Toxicol 85(4):327–335. https://doi.org/10.1007/s00204-010-0588-7

    Article  CAS  Google Scholar 

  47. Iano FG, Ferreira MCF, Quaggio GB, Oliveira RC, Ximenes VF, Buzalaf MAR (2011) Effect of fluoride in antioxidant systems of the heart. Free Radic Biol Med 51:S57. https://doi.org/10.1016/j.freeradbiomed.2011.10.147

    Article  Google Scholar 

  48. Basha SK, Rao KJ (2014) Sodium fluorine induced histopathalogical changes in liver and kidney of albino mice. Acta Chim Pharm Indica 4(1):58–62

    Google Scholar 

  49. Guan ZZ, Xiao KQ, Zeng XY, Long YG, Cheng YH, Jiang SF, Wang YN (2000) Changed cellular membrane lipid composition and lipid peroxidation of kidney in rats with chronic fluorosis. Arch Toxicol 74(10):602–608. https://doi.org/10.1007/s002040000177

    Article  CAS  Google Scholar 

  50. Zhang J, Zhu WJ, Xu XH, Zhang ZG (2011) Effect of fluoride on calcium ion concentration and expression of nuclear transcription factor kappa-B ρ65 in rat hippocampus. Exp Toxicol Pathol 63(5):407–411. https://doi.org/10.1016/j.etp.2010.02.017

    Article  CAS  Google Scholar 

  51. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2010) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58(5):730–735. https://doi.org/10.1002/ana.20629

    Article  CAS  Google Scholar 

  52. Behl C, Holsboer F (1998) Oxidative stress in the pathogenesis of Alzheimer's disease and antioxidant neuroprotection. Fortschr Neurol Psychiatr 66(3):113–121. https://doi.org/10.1055/s-2007-995246

    Article  CAS  Google Scholar 

  53. Liu Z, Niu W, Yang X, Wang Y (2013) Effects of combined acupuncture and eugenol on learning-memory ability and antioxidation system of hippocampus in Alzheimer disease rats via olfactory system stimulation. J Tradit Chin Med 33(3):399–402. https://doi.org/10.1016/s0254-6272(13)60186-7

    Article  Google Scholar 

  54. Richard A, Bourgoin S, Naccache PH, L’ Heureux GP, Krump E, McColl SR, Pelletier G (1996) C2-ceramde primes specifically for the superoxide anion production induced by N-formylmethionylleucyl phenylalanine(fMLP) in the human neutrophils. Biochim Biophys Acta 1299(2):259–266. https://doi.org/10.1016/0005-2760(95)00215-4

    Article  Google Scholar 

  55. Feng P, Wei J, Zhang Z (2011) Intervention of selenium on chronic fluorosis-induced injury of blood antioxidant capacity in rats. Biol Trace Elem Res 144(1–3):1024–1031. https://doi.org/10.1007/s12011-011-9087-9

    Article  CAS  Google Scholar 

  56. Shayiq RM, Raza H, Kidwai AM (1986) Fluoride and lipid peroxidation: a comparative study in different rat tissues. Bull Environ Contam Toxicol 37(1):70–76. https://doi.org/10.1007/bf01607731

    Article  CAS  Google Scholar 

  57. Bao Y, Wang Z, Zhang Y, Zhang J, Wang L, Dong X, Su F, Yao G, Wang S, Zhang H (2012) Effect of Lactobacillus plantarum P-8 on lipid metabolism in hyperlipidemic rat model. Eur J Lipid Sci Technol 114(11):1230–1236. https://doi.org/10.1002/ejlt.201100393

    Article  CAS  Google Scholar 

  58. Martarelli D, Verdenelli MC, Scuri S, Cocchioni M, Silvi S, Cecchini C, Pompei P (2011) Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr Microbiol 62(6):1689–1696. https://doi.org/10.1007/s00284-011-9915-3

    Article  CAS  Google Scholar 

  59. Gao Q, Liu YJ, Guan ZZ (2009) Decreased learning and memory ability in rats with fluorosis: increased oxidative stress and reduced cholinesterase activity in the brain. Fluoride 42(4):277–285

    CAS  Google Scholar 

  60. Ekambaram P, Paul V (2001) Calcium preventing locomotor behavioral and dental toxicities of fluoride by decreasing serum fluoride level in rats. Environ Toxicol Pharmacol 9(4):141–146. https://doi.org/10.1016/s1382-6689(00)00063-6

    Article  CAS  Google Scholar 

  61. Worth DC, Daly CN, Geraldo S, Oozeer F, Gordon-Weeks PR (2013) Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 202(5):793–806. https://doi.org/10.1083/jcb.201303005

    Article  CAS  Google Scholar 

  62. Hiromu T, Noriko H, Akira F, Gennady C (2012) Mathematical modeling of sustainable synaptogenesis by repetitive stimuli suggests signaling mechanisms in vivo. PLoS One 7(12):e51000. https://doi.org/10.1371/journal.pone.0051000

    Article  CAS  Google Scholar 

  63. Chen L, Chen H, Yao C, Chang C, Xia H, Zhang C, Xia H, Zhang C, Zhou Y, Yao Q, Chen K (2015) The toxicity of sodium fluoride on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under sodium fluoride-stress. J Hazard Mater 286:624–631. https://doi.org/10.1016/j.jhazmat.2014.12.056

    Article  CAS  Google Scholar 

  64. Marchisella F, Coffey ET, Hollos P (2016) Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 73(10):596–611. https://doi.org/10.1002/cm.21300

    Article  CAS  Google Scholar 

  65. Gundersen V, Storm-Mathisen J, Bergersen LH (2015) Neuroglial transmission. Physiol Rev 95(3):695–726. https://doi.org/10.1152/physrev.00024.2014

    Article  CAS  Google Scholar 

  66. Hami J, Vafaei-Nezhad S, Ivar G, Sadeghi A, Ghaemi K, Mostafavizadeh M, Hosseini M (2016) Altered expression and localization of synaptophysin in developing cerebellar cortex of neonatal rats due to maternal diabetes mellitus. Metab Brain Dis 31(6):1369–1380. https://doi.org/10.1007/s11011-016-9864-4

    Article  CAS  Google Scholar 

  67. Liu S, Yang C, Zhang Y, Su R, Chen J, Jiao M, Chen H, Zheng N, Luo S, Chen Y, Quan S, Wang Q (2016) Neuroprotective effect of β-asarone against Alzheimer’s disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des Devel Ther 10:1461–1469. https://doi.org/10.2147/DDDT.S93559

    Article  CAS  Google Scholar 

  68. VanGuilder HD, Farley JA, Yan H, VanKrik CA, Mitschelen M, Sonntag WE, Freeman WM (2011) Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 43(1):201–212. https://doi.org/10.1016/j.nbd.2011.03.012

    Article  CAS  Google Scholar 

  69. Ge Y, Chen L, Yin Z, Song X, Ruan T, Hua L, Liu J, Wang J, Ning H (2018) Fluoride-induced alterations of synapse-related proteins in the cerebral cortex of ICR offspring mouse brain. Chemosphere 201:874–883. https://doi.org/10.1016/j.chemosphere.2018.02.167

    Article  CAS  Google Scholar 

  70. Dinan TG, Cryan JF (2017) Gut-brain axis in 2016: brain-gut-microbiota axis - mood, metabolism and behaviour. Nat Rev Gastroenterol Hepatol 14(2):69–70. https://doi.org/10.1038/nrgastro.2016.200

    Article  CAS  Google Scholar 

  71. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC (2017) Microbes and mental health: a review. Brain Behav Immun 66:9–17. https://doi.org/10.1016/j.bbi.2017.01.016

    Article  CAS  Google Scholar 

  72. Vani ML, Reddy KP (2000) Effects of fluoride accumulation on some enzymes of brain and gastrocne miun musule of mice. Fluoride 33(1):17–26

    CAS  Google Scholar 

  73. Wingenfeld K, Wolf OT (2014) Stress, memory, and the hippocampus. Front Neurol Neurosci 34:109–120. https://doi.org/10.1159/000356423

    Article  Google Scholar 

  74. Pereira M, Dombrowski PA, Losso EM, Chioca LR, Da Cunha C, Andreatini R (2011) Memory impairment induced by sodium fluoride is associated with changes in brain monoamine levels. Neurotox Res 19(1):55–62. https://doi.org/10.1007/s12640-009-9139-5

    Article  CAS  Google Scholar 

  75. Lee HJ, Hwang YH, Kim DH (2018) Lactobacillus plantarum C29-fermented soybean(DW2009) alleviates memory impairment in 5XFAD transgenic mice by regulating microglia activation and gut microbiota composition. Mol Nutr Food Res 62(20):e1800359. https://doi.org/10.1002/mnfr.201800359

    Article  CAS  Google Scholar 

  76. Saunders PR, Santos J, Hanssen NP, Yates D, Groot JA, Perdue MH (2002) Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci 47(1):208–215. https://doi.org/10.1023/a:1013204612762

    Article  Google Scholar 

  77. Gordon SL, Cousin MA (2014) The sybtraps: control of synaptobrevin traffic by synaptophysin, α-Synuclein and AP-180. Traffic 15(3):245–254. https://doi.org/10.1111/tra.12140

    Article  CAS  Google Scholar 

  78. Takeshi F, Morio N, Sakura Y (2015) Development of PET and SPECT probes for glutamate receptors. ScientificWorldJournal 2015:716514. https://doi.org/10.1155/2015/716514

    Article  CAS  Google Scholar 

  79. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055. https://doi.org/10.1073/pnas.1102999108

    Article  Google Scholar 

Download references

Funding

This work was supported by funding from the National Natural Science Foundation of China (31970503) and Sichuan Science and Technology Program (2018HH0103).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experiments. NS, XN, HW, JX, YZ performed the experiments. NS and HW drafted and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hesong Wang or Dong Zeng.

Ethics declarations

All animal experiment procedures were conducted in accordance with the guidelines of the Animal Welfare Act and all procedures and protocols were approved by the Institutional Animal Care and Use Committee of the Sichuan Agricultural University.

Competing Interests

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ning Sun and Xueqin Ni are equal contributors.

Electronic supplementary material

ESM 1

(DOCX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Ni, X., Wang, H. et al. Probiotic Lactobacillus johnsonii BS15 Prevents Memory Dysfunction Induced by Chronic High-Fluorine Intake through Modulating Intestinal Environment and Improving Gut Development. Probiotics & Antimicro. Prot. 12, 1420–1438 (2020). https://doi.org/10.1007/s12602-020-09644-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09644-9

Keywords

Navigation