Advertisement

Characterisation of Faecal Staphylococci from Roe Deer (Capreolus capreolus) and Red Deer (Cervus elaphus) and Their Susceptibility to Gallidermin

  • A. LaukováEmail author
  • E. Bino
  • I. Kubašová
  • V. Strompfová
  • R. Miltko
  • G. Belzecki
  • M. Pogány Simonová
Article

Abstract

Our current knowledge of microbiota in wild ruminants is limited. The goal of this study was to evaluate staphylococcal species in red and roe deer for various attributes (haemolysis, DNase, and urease activities; lactic acid and biofilm production; and antibiotic profile) and their susceptibility to gallidermin. Sixteen staphylococcal strains were identified from faeces of 21 free-living animals (9 adult female Cervus elaphus—red deer and 12 young female Capreolus capreolus—roe deer) sampled by the Polish colleagues in the Strzałowo Forest District, Piska Primaeval Forest. The variability in the species of staphylococci was determined. Seven species (Staphylococcus capitis, S. epidermidis, S. haemolyticus, S. hominis, S. pseudintermedius, S. vitulinus and S. warneri) and five clusters/groups of coagulase-negative staphylococci (CoNS) were identified. The strains were generally not haemolytic and Dnase negative; did not form biofilms or only produced low-grade biofilms; exhibited high levels of lactic acid; were urease positive; and were generally susceptible to antibiotics (only two strains were resistant to multiple antibiotics). However, all of the strains were susceptible to the lantibiotic bacteriocin gallidermin, with a minimal inhibitory concentration of 0.0156 μg (up to 6400 AU/ml in arbitrary units). This is the first study to perform a detailed study of the properties of CoNS from roe and red deer.

Keywords

Staphylococci Roe deer Red deer Properties Variety of species 

Notes

Acknowledgements

We are grateful to Mrs. Margita Bodnárová for her skillful laboratory work. We also thank Dr. Radomíra Nemcová from the University of Veterinary Medicine and Pharmacy in Košice for assisting with the microtitre plate assay.

Funding information

This study was financially supported by the Slovak Scientific Agency VEGA, project 2/0006/17, and ITMS 26220220204 (Probiotech, Centre of Competency for Biomodulators and Nutritive additives). Part of the project was also supported by the Statutory Research Fund of the Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland.

Compliance with Ethical Standards

Ethical Approval

Approval of animal ethics for the sampling in this study was obtained from the Ethic Commission of Polish partner institution.

Conflict of Interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Bancerz-Kisiel A, Szczerba-Turek A, Platt-Samoraj A, Socha P, Szweda W (2014) Bioserotypes and virulence markers of Y. enterocolitica strains isolated from roe deer (Capreoles capreoles) and red deer (Cervus elaphus). Polish J Vet Sci 17:315–319CrossRefGoogle Scholar
  2. 2.
    Beukes LS, Schmidt S (2018) Antibiotic resistance profiles of coagulase- positive and coagulase-negative staphylococci from pit latrine fecal sludge in a peri-urban South African community. Folia Microbiol 63:645–651CrossRefGoogle Scholar
  3. 3.
    Bino E, Lauková A, Ščerbová J, Kubašová I, Kandričáková A, Strompfová V, Miltko R, Belzecki G (2019) Fecal coagulase-negative staphylococci from horses, their species variability, and biofilm formation Folia Microbiol.  https://doi.org/10.1007/s12223-019-00684-5
  4. 4.
    Bottone EJ (1997) Yersinia enterocolitica:the charisma continues. Clin Microbiol Rev 10:257–276CrossRefGoogle Scholar
  5. 5.
    Bierbaum G, Goetz F, Peschel A, Kupke T, van de Kamp M, Sahl HG (1996) The biosynthesis of the lantibiotics epidermin, gallidermin, pep 5 and epilancin K7. Ant Leeuwen 69:119–127CrossRefGoogle Scholar
  6. 6.
    Busscher JF, van Duijkeren E, Sloet van Oldruitenborh-Oosterbaan M (2006) The prevalence of methicillin-resistant staphylococci in healthy horses in the Netherlands. Vet Microbiol 113:131–136CrossRefGoogle Scholar
  7. 7.
    Clinical Laboratory Standards Institute (2011) Performance standards for antimicrobial disk susceptibility tests; Approved standard- 9th Ed. CLSI document M2-A9. 26:1. Clinical Laboratory Standards Institute, WayneGoogle Scholar
  8. 8.
    Costa MC, Weese JS (2012) The equine intestinal microbiome. Animal health research reviews/conference of research workers in animal diseases, pp 1–8Google Scholar
  9. 9.
    De Vuyst L, Callewaert R, Pot B (1996) Characterization of the antagonistic activity of Lactobacillus amylovorus DCE471 and large scale isolation of its bacteriocin amylovorin L471. Syst Appl Microbiol 19:9–20CrossRefGoogle Scholar
  10. 10.
    Furmánek B, Koczorowski T, Bugalski R, Bielowski K, Bohdanowicz J, Podhajska AJ (1999) Identification, characterization and purification of the lantibiotic staphylococcin T, a natural gallidermin variant. J Appl Microbiol 87:856–866CrossRefGoogle Scholar
  11. 11.
    Hauschild T (2001) Phenotypic and genotypic identification of staphylococci isolated from wild small animals. Syst Appl Microbiol 24:411–416CrossRefGoogle Scholar
  12. 12.
    Chaieb K, Chehab O, Zmantar T, Rouabhia M, Mahdouani K, Bakrhouf A (2007) In vitro effect of pH and ethanol on biofilm formation by clinical ica-positive Staphylococcus epidermidis strains. Ann Microbiol 57:431–437CrossRefGoogle Scholar
  13. 13.
    Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982) Adherence of slime- producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37:318–326PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kandričáková A, Lauková A, Ščerbová J (2016) Staphylococci related to farm ostriches and their sensitivity to enterocins. Foodborne Path Dis 13:142–147CrossRefGoogle Scholar
  15. 15.
    Kmeť V, Čuvalová A, Stanko M (2018) Small mammals as sentinels of antimicrobial-resistant staphylococci. Folia Microbiol 63:665–668CrossRefGoogle Scholar
  16. 16.
    Lauková A (1993a) Enterococci and staphylococci isolates from rumen of fallow deers and their antimicrobial activity. Microbiologica 16:351–358PubMedGoogle Scholar
  17. 17.
    Lauková A (1993b) The species representation of staphylococcus in rumen ingesta of mouflons and European bisons (in Slovak). Živoč Výr (Animal Prod) 38:139–143Google Scholar
  18. 18.
    Lauková A (1999) Vancomycin-resistant enterococci isolates from the rumen content of deer. Microbios 97:95–101PubMedGoogle Scholar
  19. 19.
    Lauková A, Kandričáková A (2015) Staphylococci detected in faecal samples of common pheasants and their relation to enterocins. Int J Curr Microbiol Appl Sci 4:788–797Google Scholar
  20. 20.
    Lauková A, Kandričáková A, Pleva P, Buňková L, Ščerbová J (2017) Effect of lantibiotic gallidermin against biogenic amine-producing faecal staphylococci from ostriches and pheasants. Folia Microbiol 62:229–235CrossRefGoogle Scholar
  21. 21.
    Lehner G, Linek M, Bond R, Lloyd DH, Prenger-Berninghoff E, Thom N, Straube I, Verheyen K, Loeffler A (2014) Case-control risk factor study of methicillin-resistant Staphylococcus pseudointermedius (MRSP) infection in dogs and cats in Germany. Vet Microbiol 168:154–160CrossRefGoogle Scholar
  22. 22.
    Lovari S, Herrero J, Conroy J, Maran T, Giannatos G, Stubbe M, Aulagnier S, Jdeid T, Masseti M, Nader I, De Smet K, Cuzin F (2008) Capreolus capreolus (http://www.iucnredlist.org/apps/redlist/details/42395). In: IUCN Red List of Threatened species
  23. 23.
    Melchior MB, van Osch MH, Graat RM, van Duijkeren E, Mevius DJ, Nielen M, Gaastra W, Fink-Gremmels J (2009) Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates:evidence for lack of penicillin-resistance in Agr-type II strains. Vet Microbiol 137:83–89CrossRefGoogle Scholar
  24. 24.
    Pag U, Sahl HG (2002) Antimicrobial peptides:discovery, design and novel therapeutic strategies. Curr Phar Design 8:815–833CrossRefGoogle Scholar
  25. 25.
    Ruzauskas M, Siugzdiniene R, Klimiene I, Virgalis M, Mockeliunas R, Vaskeviciute L, Zienus D (2014) Prevalence of methicillin-resistant Staphylococcus haemolyticus in companion animals: a cross-sectional study. Ann Clin Microbiol Antimicrob 13:56–62CrossRefGoogle Scholar
  26. 26.
    Semedo T, Santos MA, Lopes MF, Figueirdo Marques JJ, Barreto Crespo MT, Tenreiro R (2003) Virulence factors in foods, clinical and reference enterococci: a common trait in the genus? Syst Appl Microbiol 26:13–22CrossRefGoogle Scholar
  27. 27.
    Semedo-Lemsaddek T, Silva Nobreg C, Ribeiro T, Pedroso N, Sales-Luis T, Lemsaddek A, Tenreiro R, Tavares L, Vilela CL, Oliviera M (2013) Virulence traits and antibiotic resistance among enterococci isolated from Euroasian otter (Lutra lutra). Vet Microbiol 163:378–382CrossRefGoogle Scholar
  28. 28.
    Schleifer KH. Bell JA (2015) Staphylococcus. In: Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (eds) Bergey’s Manual of Systematic Archaea and Bacteria 1.  https://doi.org/10.1002/9781118960608.gbm00569
  29. 29.
    Slížová M, Nemcová R, Maďar M, Hadryová J, Gancarčíková S, Popper M, Pistl J (2015) Analysis of biofilm formation by intestinal lactobacilli. Can J Microbiol 61:437–466CrossRefGoogle Scholar
  30. 30.
    Takashi T, Satoh I, Kikuchi N (1999) Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol 49:725–728CrossRefGoogle Scholar
  31. 31.
    Vengust M, Anderson MEC, Rousseau J, Weese JS (2006) Methicillin-resistant staphylococcal colonization in clinically normal dogs and horses in the community. Lett Appl Microbiol 43:602–606CrossRefGoogle Scholar
  32. 32.
    Ward TJ, Toweil D (2002) Elk of North America, Ecology and Management. Harper Collins, New York ISBN 1-58834-018-XGoogle Scholar
  33. 33.
    Weese JS, Caldwell F, Willey BM, Kreiswirth BN, McGee A, Rousseau J, Low DE (2006) An outbreak of methicillin-resistant Staphylococcus aureus skin infections resulting from horse to human transmission in a veterinary hospital. Vet Microbiol 114:160–164CrossRefGoogle Scholar
  34. 34.
    Yasuda R, Kawano J, Matsuo E, Masuda T, Shimizu A, Anzai T, Hashikura S (2002) Distribution of mecA-harboring staphylococci in healthy mares. J Vet Med Sci 64:821–827CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Lauková
    • 1
    Email author
  • E. Bino
    • 1
  • I. Kubašová
    • 1
  • V. Strompfová
    • 1
  • R. Miltko
    • 2
  • G. Belzecki
    • 2
  • M. Pogány Simonová
    • 1
  1. 1.Institute of Animal PhysiologyCentre of Biosciences of the Slovak Academy of SciencesKošiceSlovakia
  2. 2.The Kielanowski Institute of Animal Physiology and NutritionPolish Academy of SciencesJablonnaPoland

Personalised recommendations