Advertisement

Probiotic Intake Increases the Expression of Vitellogenin Genes in Laying Hens

  • Maria S. Mazanko
  • Maksim S. MakarenkoEmail author
  • Vladimir A. Chistyakov
  • Alexander V. Usatov
  • Evgeniya V. Prazdnova
  • Anzhelika B. Bren
  • Ivan F. Gorlov
  • Zoya B. Komarova
  • Richard Weeks
  • Michael L. Chikindas
Article
  • 10 Downloads

Abstract

A promising approach for slowing down the rate of reproductive aging is the use of probiotic bacteria as a feed additive. In the current study was investigated the influence of the intake of a potential probiotic on the follicle content and expression of vitellogenin genes (vtg1, vtg2, vtg3) in aged hens. RNA was isolated from liver samples collected from 570-day-old laying hens and gene expression levels were measured using RT-PCR. Bacillus subtilis KATMIRA1933 supplementation had a positive effect on the number of formed follicles in hens and also triggered a significant increase in the relative expression levels of vtg1, vtg2, and vtg3. A Bacillus amyloliquefaciens B-1895 enriched diet or a combination of the two strains had a modest effect on both the number of follicles and the expression of vitellogenin genes. Additionally, the study demonstrates that vitellogenin mRNA expression levels can be considered as a biomarker in a convenient approach for analyzing the hen’s egg-laying ability.

Keywords

Poultry Vitellogenin vtg Reproductive aging Probiotic supplementation Bacillus 

Notes

Funding Information

This study was supported by the grant from the Russian Science Foundation RSF No.16-16-04032.

Compliance with Ethical Standards

Ethics

This article is original and contains unpublished materials. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Brawand D, Wahli W, Kaessmann H (2008) Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biol 6(3):e63.  https://doi.org/10.1371/journal.pbio.0060063 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Evans MI, Silva R, Burch JB (1988) Isolation of chicken vitellogenin I and III cDNAs and the developmental regulation of five estrogen-responsive genes m the embryonic liver. Genes Dev 2:116–124.  https://doi.org/10.1101/gad.2.1.116 CrossRefPubMedGoogle Scholar
  3. 3.
    Hughes AL (2015) Life-history evolution at the molecular level: adaptive amino acid composition of avian vitellogenins. Proc Biol Sci 282(1812):20151105.  https://doi.org/10.1098/rspb.2015.1105 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Philipsen JN, Hennis BC, Ab G (1988) In vivo footprinting of the estrogen-inducible vitellogenin II gene from chicken. Nucleic Acids Res 16(20):9663–9676.  https://doi.org/10.1093/nar/16.20.9663 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lorenzen A, Casley WL, Moon TW (2001) A reverse transcription-polymerase chain reaction bioassay for avian vitellogenin mRNA. Toxicol Appl Pharmacol 176(3):169–180.  https://doi.org/10.1006/taap.2001.9273 CrossRefPubMedGoogle Scholar
  6. 6.
    Gupta S, Pathak RU, Kanungo MS (2006) DNA methylation induced changes in chromatin conformation of the promoter of the vitellogenin II gene of Japanese quail during aging. Gene 377:159–168.  https://doi.org/10.1016/j.gene.2006.04.020 CrossRefPubMedGoogle Scholar
  7. 7.
    Smith JM (2014) A review of avian probiotics. J Avian Med Surg 28(2):87–94.  https://doi.org/10.1647/2012-031 CrossRefPubMedGoogle Scholar
  8. 8.
    Fajardo P, Pastrana L, Méndez J, Rodríguez I, Fuciños C, Guerra NP (2012) Effects of feeding of two potentially probiotic preparations from lactic acid bacteria on the performance and faecal microflora of broiler chickens. Sci World J 2012:562635.  https://doi.org/10.1100/2012/562635 CrossRefGoogle Scholar
  9. 9.
    Khan M, Raoult D, Richet H, Lepidi H, La Scola B (2007) Growth-promoting effects of single-dose intragastrically administered probiotics in chickens. Br Poult Sci 48(6):732–735.  https://doi.org/10.1080/00071660701716222 CrossRefPubMedGoogle Scholar
  10. 10.
    Chistyakov V, Melnikov V, Chikindas ML, Khutsishvili M, Chagelishvili A, Bren A, Kostina N, Cavera V, Elisashvili V (2015) Poultry-beneficial solid-state Bacillus amyloliquefaciens B-1895 fermented soybean formulation. Biosci Microbiota Food Health 34(1):25–28.  https://doi.org/10.12938/bmfh.2014-012 CrossRefPubMedGoogle Scholar
  11. 11.
    Pourakbari M, Seidavi A, Asadpour L, Martínez A (2017) Probiotic level effects on growth performance, carcass traits, blood parameters, cecal microbiota, and immune response of broilers. An Acad Bras Cienc 88(2):1011–1021.  https://doi.org/10.1590/0001-3765201620150071 CrossRefGoogle Scholar
  12. 12.
    Forte C, Moscati L, Acuti G, Mugnai C, Franciosini MP, Costarelli S, Cobellis G, Trabalza-Marinucci M (2016) Effects of dietary Lactobacillus acidophilus and Bacillus subtilis on laying performance, egg quality, blood biochemistry and immune response of organic laying hens. J Anim Physiol Anim Nutr (Berl) 100(5):977–987.  https://doi.org/10.1111/jpn.12408 CrossRefGoogle Scholar
  13. 13.
    Fathi MM, Ebeid TA, Al-Homidan I, Soliman NK, Abou-Emera OK (2017) Influence of probiotic supplementation on immune response in broilers raised under hot climate. Br Poult Sci 58(5):512–516.  https://doi.org/10.1080/00071668.2017.1332405 CrossRefPubMedGoogle Scholar
  14. 14.
    Park JW, Jeong JS, Lee SI, Kim IH (2016) Effect of dietary supplementation with a probiotic (Enterococcus faecium) on production performance, excreta microflora, ammonia emission, and nutrient utilization in ISA brown laying hens. Poult Sci 95(12):2829–2835.  https://doi.org/10.3382/ps/pew241 CrossRefPubMedGoogle Scholar
  15. 15.
    Yan FF, Murugesan GR, Cheng HW (2018) Effects of probiotic supplementation on performance traits, bone mineralization, cecal microbial composition, cytokines and corticosterone in laying hens. Animal 22:1–9.  https://doi.org/10.1017/S175173111800109X CrossRefGoogle Scholar
  16. 16.
    Tang SG, Sieo CC, Kalavathy R, Saad WZ, Yong ST, Wong HK, Ho YW (2015) Chemical compositions of egg yolks and egg quality of laying hens fed prebiotic, probiotic, and synbiotic diets. J Food 80(8):1686–1695.  https://doi.org/10.1111/1750-3841.12947 CrossRefGoogle Scholar
  17. 17.
    Lei K, Li YL, Yu DY, Rajput IR, Li WF (2013) Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poult Sci 92(9):2389–2395.  https://doi.org/10.3382/ps.2012-02686 CrossRefPubMedGoogle Scholar
  18. 18.
    Guo JR, Dong XF, Liu S, Tong JM (2017) Effects of long-term Bacillus subtilis CGMCC 1.921 supplementation on performance, egg quality, and fecal and cecal microbiota of laying hens. Poult Sci 96(5):1280–1289.  https://doi.org/10.3382/ps/pew389 CrossRefPubMedGoogle Scholar
  19. 19.
    Mazanko MS, Gorlov IF, Prazdnova EV, Makarenko MS, Usatov AV, Bren AB, Chistyakov VA, Tutelyan AV, Komarova ZB, Mosolova NI, Pilipenko DN, Krotova OE, Struk AN, Lin A, Chikindas ML (2018) Bacillus probiotic supplementations improve laying performance, egg quality, hatching of laying hens, and sperm quality of roosters. Probiotics Antimicrob Proteins 10(2):367–373.  https://doi.org/10.1007/s12602-017-9369-4 CrossRefPubMedGoogle Scholar
  20. 20.
    Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104(4):1067–1074.  https://doi.org/10.1111/j.1365-2672.2007.03626.x CrossRefPubMedGoogle Scholar
  21. 21.
    Karlyshev AV, Melnikov VG, Chistyakov VA (2014) Draft genome sequence of Bacillus amyloliquefaciens B-1895. Genome Announc 2(3):e00633–e00614.  https://doi.org/10.1128/genomeA.00633-14 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1(2):581–585.  https://doi.org/10.1038/nprot.2006.83 CrossRefPubMedGoogle Scholar
  23. 23.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622.  https://doi.org/10.1373/clinchem.2008.112797 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Makarenko MS, Chistyakov VA, Usatov AV, Mazanko MS, Prazdnova EV, Bren AB, Gorlov IF, Komarova ZB, Chikindas ML (2018) The impact of Bacillus subtilis KATMIRA1933 supplementation on telomere length and mitochondrial DNA damage of laying hens. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-018-9440-9

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maria S. Mazanko
    • 1
  • Maksim S. Makarenko
    • 1
    Email author
  • Vladimir A. Chistyakov
    • 1
  • Alexander V. Usatov
    • 1
  • Evgeniya V. Prazdnova
    • 1
  • Anzhelika B. Bren
    • 1
  • Ivan F. Gorlov
    • 2
  • Zoya B. Komarova
    • 2
  • Richard Weeks
    • 3
  • Michael L. Chikindas
    • 1
    • 3
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Povolzhsky Research Institute of Meat and Dairy Industry Production and ProcessingVolgogradRussia
  3. 3.Health Promoting Naturals Laboratory, School of Environmental and Biological SciencesRutgers State UniversityNew BrunswickUSA

Personalised recommendations