Advertisement

Effects of Dietary Supplementation of Recombinant Plectasin on Growth Performance, Intestinal Health and Innate Immunity Response in Broilers

  • Jing Lin Ma
  • Li Hua Zhao
  • Dan Dan Sun
  • Jing Zhang
  • Yong Peng Guo
  • Zhi Qiang Zhang
  • Qiu Gang Ma
  • Cheng Ji
  • Li Hong ZhaoEmail author
Article
  • 87 Downloads

Abstract

The present study was conducted to evaluate the effects of dietary supplementation of recombinant plectasin (Ple) on the growth performance, intestinal health, and serum immune parameters in broilers. A total of 288 1-day-old male broilers (Arbor Acres) were randomly allotted to four dietary treatments including the basal diet (NC) and basal diet supplemented with 10 mg enramycin/kg (PC), 100 mg Ple/kg (LPle), and 200 mg Ple/kg (HPle) diets. The results indicated Ple increased (P < 0.01) average daily gain and decreased (P ≤ 0.02) feed to gain ratio of broilers. In addition, the supplementation of Ple in the diets increased (P ≤ 0.01) duodenal lipase (day 21) and trypsin (day 42) activities compared with the NC group. Similar as the supplementation of enramycin, Ple also increased villus height and decreased crypt depth in jejunum (day 21), and thus the villus height to crypt depth ratio (P < 0.01) was increased compared to the NC group on day 42. The serum immunoglobulin M (days 21 and 42), immunoglobulin G (day 42), complement 3 (day 21), and complement 4 (days 21 and 42) were significantly increased (P ≤ 0.02) due to the supplementation of Ple and enramycin, while the concentration of malondialdehyde in jejunum was decreased (P < 0.01) in PC, LPle, and HPle groups on day 21 compared with those in the NC group. Furthermore, Ple reduced (P < 0.01) Escherichia coli and total aerobic bacteria population in ileum and cecum of birds on days 21 and 42. These results indicate that the recombinant plectasin has beneficial effects on growth performance, intestinal health, and innate immunity in broilers.

Keywords

Plectasin Broilers Growth performance Intestinal health Serum immunoglobulins 

Notes

Funding Information

This study was supported by the National Key R&D Program of China (No. 2018YFD0500600), the Opening Foundation of Key Laboratory of Biomass Energy and Materials of Jiangsu Province (JSBEM2016013), and a Special Fund for Agro-scientific Research in the Public Interest (201403047).

Compliance with Ethical Standards

All experimental procedures were approved by the animal care and management committee of China Agriculture University. All diets were formulated to meet Aviagen broiler nutrient recommendations.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kumar K, Gupta SC, Chander Y, Singh AK (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54.  https://doi.org/10.1016/S0065-2113(05)87001-4 CrossRefGoogle Scholar
  2. 2.
    Monroe S, Polk R (2000) Antimicrobial use and bacterial resistance. Curr Opin Microbiol 3(5):496–501.  https://doi.org/10.1016/S1369-5274(00)00129-6 CrossRefPubMedGoogle Scholar
  3. 3.
    Schwarz S, Kehrenberg C, Walsh TR (2001) Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents 17(6):431–437.  https://doi.org/10.1016/S0924-8579(01)00297-7 CrossRefPubMedGoogle Scholar
  4. 4.
    Knudsen KEB (2001) Development of antibiotic resistance and options to replace antimicrobials in animal diets. Proc Nutr Soc 60(3):291–299CrossRefGoogle Scholar
  5. 5.
    Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG (2002) Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA 99(9):6434–6439.  https://doi.org/10.1073/pnas.082188899 CrossRefPubMedGoogle Scholar
  6. 6.
    Huyghebaert G, Ducatelle R, Van Immerseel F (2011) An update on alternatives to antimicrobial growth promoters for broilers. Vet J 187(2):182–188.  https://doi.org/10.1016/j.tvjl.2010.03.003 CrossRefPubMedGoogle Scholar
  7. 7.
    Hu YN, Cheng HF (2015) Use of veterinary antimicrobials in China and efforts to improve their rational use. J Glob Antimicrob Re 3(2):144–146.  https://doi.org/10.1016/j.jgar.2015.03.003 CrossRefGoogle Scholar
  8. 8.
    Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84(4):634–643.  https://doi.org/10.1093/ps/84.4.634 CrossRefPubMedGoogle Scholar
  9. 9.
    Wierup M (2001) The Swedish experience of the 1986 year ban of antimicrobial growth promoters, with special reference to animal health, disease prevention, productivity, and usage of antimicrobials. Microb Drug Resist 7(2):183–190.  https://doi.org/10.1089/10766290152045066 CrossRefPubMedGoogle Scholar
  10. 10.
    Griggs JP, Jacob JP (2005) Alternatives to antibiotics for organic poultry production. J Appl Poult Res 14(4):750–756.  https://doi.org/10.1093/japr/14.4.750 CrossRefGoogle Scholar
  11. 11.
    Tayeri V, Seidavi A, Asadpour L, Phillips CJC (2018) A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Vet Res Commun 42(3):195–207.  https://doi.org/10.1007/s11259-018-9724-2 CrossRefPubMedGoogle Scholar
  12. 12.
    Thacker PA (2013) Alternatives to antibiotics as growth promoters for use in swine production: a review. J Anim Sci Biotechno 4:35.  https://doi.org/10.1186/2049-1891-4-35 CrossRefGoogle Scholar
  13. 13.
    Hadley EB, Hancock RE (2010) Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Curr Top Med Chem 10(18):1872–1881CrossRefGoogle Scholar
  14. 14.
    Wang D, Ma W, She R, Sun Q, Liu Y, Hu Y, Liu L, Yang Y, Peng K (2009) Effects of swine gut antimicrobial peptides on the intestinal mucosal immunity in specific-pathogen-free chickens. Poult Sci 88(5):967–974.  https://doi.org/10.3382/ps.2008-00533 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang Y, Shan T, Xu Z, Liu J, Feng J (2006) Effect of lactoferrin on the growth performance, intestinal morphology, and expression of PR-39 and protegrin-1 genes in weaned piglets. J Anim Sci 84(10):2636–2641.  https://doi.org/10.2527/jas.2005-544 CrossRefPubMedGoogle Scholar
  16. 16.
    Wen LF, He JG (2012) Dose-response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. Brit J Nutr 108(10):1756–1763.  https://doi.org/10.1017/S0007114511007240 CrossRefPubMedGoogle Scholar
  17. 17.
    Yoon JH, Ingale SL, Kim JS, Kim KH, Lee SH, Park YK, Lee SC, Kwon IK, Chae BJ (2014) Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs. Livest Sci 159:53–60.  https://doi.org/10.1016/j.livsci.2013.10.025 CrossRefGoogle Scholar
  18. 18.
    Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2(9):727–738.  https://doi.org/10.1038/nrmicro976 CrossRefPubMedGoogle Scholar
  19. 19.
    Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980.  https://doi.org/10.1038/nature04051 CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Ravents DS, Neve S, Ravn B, Bonvin AMJJ, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328(5982):1168–1172.  https://doi.org/10.1126/science.1185723 CrossRefPubMedGoogle Scholar
  21. 21.
    Hara S, Mukae H, Sakamoto N, Ishimoto H, Amenomori M, Fujita H, Ishimatsu Y, Yanagihara K, Kohno S (2008) Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem Biophys Res Commun 374(4):709–713.  https://doi.org/10.1016/j.bbrc.2008.07.093 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang J, Yang YL, Teng D, Tian ZG, Wang SR, Wang JH (2011) Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr Purif 78(2):189–196.  https://doi.org/10.1016/j.pep.2011.04.014 CrossRefPubMedGoogle Scholar
  23. 23.
    Wan J, Li Y, Chen DW, Yu B, Chen G, Zheng P, Mao XB, Yu J, He J (2016) Recombinant plectasin elicits similar improvements in the performance and intestinal mucosa growth and activity in weaned pigs as an antibiotic. Anim Feed Sci Technol 211:216–226.  https://doi.org/10.1016/j.anifeedsci.2015.12.003 CrossRefGoogle Scholar
  24. 24.
    Xiong X, Yang HS, Li L, Wang YF, Huang RL, Li FN, Wang SP, Qiu W (2014) Effects of antimicrobial peptides in nursery diets on growth performance of pigs reared on five different farms. Livest Sci 167:206–210.  https://doi.org/10.1016/j.livsci.2014.04.024 CrossRefGoogle Scholar
  25. 25.
    Wu SD, Zhang FR, Huang ZM, Liu H, Xie CY, Zhang J, Thacker PA, Qiao SY (2012) Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 35(2):225–230.  https://doi.org/10.1016/j.peptides.2012.03.030 CrossRefPubMedGoogle Scholar
  26. 26.
    Bao H, She R, Liu T, Zhang Y, Peng KS, Luo D, Yue Z, Ding Y, Hu Y, Liu W, Zhai L (2009) Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens. Poult Sci 88(2):291–297.  https://doi.org/10.3382/ps.2008-00330 CrossRefPubMedGoogle Scholar
  27. 27.
    Choi SC, Ingale SL, Kim JS, Park YK, Kwon IK, Chae BJ (2013) An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br Poult Sci 54(6):738–746.  https://doi.org/10.1080/00071668.2013.838746 CrossRefPubMedGoogle Scholar
  28. 28.
    Choi SC, Ingale SL, Kim JS, Park YK, Kwon IK, Chae BJ (2013) Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broilers. Anim Feed Sci Technol 185(1–2):78–84.  https://doi.org/10.1016/j.anifeedsci.2013.07.005 CrossRefGoogle Scholar
  29. 29.
    Hernandez F, Madrid J, Garcia V, Orengo J, Megias MD (2004) Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult Sci 83(2):169–174.  https://doi.org/10.1093/ps/83.2.169 CrossRefPubMedGoogle Scholar
  30. 30.
    Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult Sci 86(2):309–317.  https://doi.org/10.1093/ps/86.2.309 CrossRefPubMedGoogle Scholar
  31. 31.
    de Almada CN, Nunes de Almada C, Martinez RC, Sant'Ana Ade S (2015) Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Appl Microbiol Biotechnol 99(10):4175–4199.  https://doi.org/10.1007/s00253-015-6582-5 CrossRefPubMedGoogle Scholar
  32. 32.
    Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. P Nutr Soc 74(1):13–22.  https://doi.org/10.1017/S0029665114001463 CrossRefGoogle Scholar
  33. 33.
    Martin R, Nauta AJ, Ben Amor K, Knippels LM, Knol J, Garssen J (2010) Early life: gut microbiota and immune development in infancy. Benefic Microbes 1(4):367–382.  https://doi.org/10.3920/BM2010.0027 CrossRefGoogle Scholar
  34. 34.
    Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904.  https://doi.org/10.1152/physrev.00045.2009 CrossRefPubMedGoogle Scholar
  35. 35.
    Jin Z, Yang YX, Choi JY, Shinde PL, Yoon SY, Hahn TW, Lim HT, Park Y, Hahm KS, Joo JW, Chae BJ (2008) Potato (Solanum tuberosum L. cv. Gogu valley) protein as a novel antimicrobial agent in weanling pigs. J Anim Sci 86(7):1562–1572.  https://doi.org/10.2527/jas.2007-0414 CrossRefPubMedGoogle Scholar
  36. 36.
    Tang ZR, Yin YL, Zhang YM, Huang RL, Sun ZH, Li TJ, Chu WY, Kong XF, Li LL, Geng MM, Tu Q (2009) Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Brit J Nutr 101(7):998–1005.  https://doi.org/10.1017/S0007114508055633 CrossRefPubMedGoogle Scholar
  37. 37.
    Wang YZ, Shan TZ, Xu ZR, Feng J, Wang ZQ (2007) Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Anim Feed Sci Technol 135(3–4):263–272.  https://doi.org/10.1016/j.anifeedsci.2006.07.013 CrossRefGoogle Scholar
  38. 38.
    Sukhotnik I, Yakirevich E, Coran AG, Siplovich L, Krausz M, Sabo E, Kramer A, Shiloni E (2002) Lipopolysaccharide endotoxemia reduces cell proliferation and decreases enterocyte apopotosis during intestinal adaptation in a rat model of short-bowel syndrome. Pediatr Surg Int 18(7):615–619.  https://doi.org/10.1007/s00383-002-0862-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140.  https://doi.org/10.1038/nrmicro818 CrossRefPubMedGoogle Scholar
  40. 40.
    Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26(4):822–880.  https://doi.org/10.1128/Cmr.00022-13 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cao GT, Zeng XF, Chen AG, Zhou L, Zhang L, Xiao YP, Yang CM (2013) Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci 92(11):2949–2955.  https://doi.org/10.3382/ps.2013-03366 CrossRefPubMedGoogle Scholar
  42. 42.
    Emami NK, Daneshmand A, Naeini SZ, Graystone EN, Broom LJ (2017) Effects of commercial organic acid blends on male broilers challenged with E-coli K88: performance, microbiology, intestinal morphology, and immune response. Poult Sci 96(9):3254–3263.  https://doi.org/10.3382/ps/pex106 CrossRefPubMedGoogle Scholar
  43. 43.
    Nonaka A, Manabe T, Asano N, Yamaki K, Ohshio G, Hirano T, Tobe T (1989) Effect of endotoxin on digestive enzyme and superoxide-dismutase in mouse pancreas. Digestion 44(3):148–154. Doi.  https://doi.org/10.1159/000199904 CrossRefPubMedGoogle Scholar
  44. 44.
    Wang S, Zeng XF, Wang QW, Zhu JL, Peng Q, Hou CL, Thacker P, Qiao SY (2015) The antimicrobial peptide sublancin ameliorates necrotic enteritis induced by Clostridium perfringens in broilers. J Anim Sci 93(10):4750–4760.  https://doi.org/10.2527/jas.2015-9284 CrossRefPubMedGoogle Scholar
  45. 45.
    Karimzadeh S, Rezaei M, Yansari AT (2017) Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livest Sci 203:37–40.  https://doi.org/10.1016/j.livsci.2017.06.013 CrossRefGoogle Scholar
  46. 46.
    Nandi A, Banerjee G, Dan SK, Ghosh K, Ray AK (2018) Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739. Probiotics Antimicro 10(2):391–398.  https://doi.org/10.1007/s12602-017-9310-x CrossRefGoogle Scholar
  47. 47.
    Ahire JJ, Mokashe NU, Chaudhari BL (2018) Effect of dietary probiotic lactobacillus helveticus on growth performance, antioxidant levels, and absorption of essential trace elements in goldfish (Carassius auratus). Probiotics Antimicro.  https://doi.org/10.1007/s12602-018-9428-5
  48. 48.
    Bowdish DME, Davidson DJ, Hancock REW (2005) A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 6(1):35–51.  https://doi.org/10.2174/1389203053027494 CrossRefPubMedGoogle Scholar
  49. 49.
    Lai YP, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30(3):131–141.  https://doi.org/10.1016/j.it.2008.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15(21):2377–2392.  https://doi.org/10.2174/138161209788682325 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Shan T, Wang Y, Wang Y, Liu J, Xu Z (2007) Effect of dietary lactoferrin on the immune functions and serum iron level of weanling piglets. J Anim Sci 85(9):2140–2146.  https://doi.org/10.2527/jas.2006-754 CrossRefPubMedGoogle Scholar
  52. 52.
    Xiang F, Xie ZL, Feng J, Yang WS, Cao ZJ, Li WX, Chen ZY, Wu YL (2015) Plectasin, first animal toxin-like fungal defensin blocking potassium channels through recognizing channel pore region. Toxins 7(1):34–42.  https://doi.org/10.3390/toxins7010034 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li ZZ, Wang XM, Wang X, Da Teng D, Mao RY, Hao Y, Wang JH (2017) Research advances on plectasin and its derivatives as new potential antimicrobial candidates. Process Biochem 56:62–70.  https://doi.org/10.1016/j.procbio.2017.02.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jing Lin Ma
    • 1
  • Li Hua Zhao
    • 2
  • Dan Dan Sun
    • 3
  • Jing Zhang
    • 1
  • Yong Peng Guo
    • 1
  • Zhi Qiang Zhang
    • 3
  • Qiu Gang Ma
    • 1
  • Cheng Ji
    • 1
  • Li Hong Zhao
    • 1
    Email author
  1. 1.State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingPeople’s Republic of China
  2. 2.National Engineering Laboratory for Animal Breeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingPeople’s Republic of China
  3. 3.Guangdong Hinabiotech Co., LtdGuangzhouPeople’s Republic of China

Personalised recommendations