Advertisement

In Vitro Evaluation of Probiotic Potential and Safety Assessment of Lactobacillus mucosae Strains Isolated from Donkey’s Lactation

  • Sonakshi Rastogi
  • Vineeta Mittal
  • Aditi SinghEmail author
Article

Abstract

The study, for the first time, reports the efficacy, safety and probiotic properties of two Lactobacillus mucosae strains, Lact. mucosae SRV5 and Lact. mucosae SRV10 isolated from donkey milk. All major in vitro screening assays were employed to evaluate studied strains. Both strains displayed good survivability at gastric pH 2.0, 0.3% bile and simulated oro-gastrointestinal fluid (above 88%). Also, cultures demonstrated good cell surface hydrophobicity and auto-aggregation ability, clearly indicating their effective cell adhesion ability. Furthermore, functional attributes for both strains demonstrated their efficient bile salt hydrolase and cholesterol-reducing ability in spent broth. In addition to this, both strains expressed significant DPPH-radical scavenging ability of both culture supernatant and intact cells. Another auxiliary health benefit exhibited by both these strains is their antimicrobial potential against 18 enteric and 5 multidrug-resistant clinical pathogens with significant inhibition zone size. Extracellular enzyme production such as lipase, amylase, protease and esterase was also studied. Detailed safety evaluation study showed the presence of innate antibiotic resistance and absence of haemolysis, DNAse and gelatinase activity in both the strains. Also, none of the strains possessed toxic mucinolytic activity in mucin degradation assay. To conclude, both donkey milk isolates, Lact. mucosae SRV5[Accession number: MK990014] and Lact. mucosae SRV10 [Accession number: MN064860], exhibited excellent probiotic ability with tolerance to simulated oro-gastrointestinal fluids, cellular hydrophobicity, auto-aggregation, bile salt hydrolase, cholesterol reduction, high antioxidant activity and antimicrobial potential especially against multidrug-resistant pathogens.

Keywords

Probiotic Lactobacillus mucosae Donkey milk Multidrug resistant pathogens Antioxidant activity Cholesterol reducing ability 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    FAO/WHO (2006) Probiotics in Food. Health and nutritional properties and guidelines for evaluation. Rome: FAO Food and Nutrition Paper. http://www.fao.org/3/a-a0512e.pdf
  2. 2.
    Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:902917.  https://doi.org/10.1155/2012/902917 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Francavilla R, Lionetti E, Castellaneta S, Ciruzzi F, Indrio F, Masciale A, Fontana C, la Rosa MM, Cavallo L, Francavilla A (2012) Randomised clinical trial: Lactobacillus reuteri DSM 17938 vs. placebo in children with acute diarrhoea-a double blind study. Aliment Pharmacol Ther 36(4):363–369.  https://doi.org/10.1111/j.1365-2036.2012.05180 CrossRefPubMedGoogle Scholar
  4. 4.
    Hickson M (2011) Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection. Ther Adv Gastroenterol 4(3):185–197.  https://doi.org/10.1177/1756283X11399115 CrossRefGoogle Scholar
  5. 5.
    Zhu Y, Michelle LT, Jobin C, Young HA (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309(2):119–127.  https://doi.org/10.1016/j.canlet.2011.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ojetti V, Gigante G, Gabrielli M, Ainora ME, Mannocci A, Lauritano EC, Gasbarrini G, Gasbarrini A (2010) The effect of oral supplementation with Lactobacillus reuteri or tilactase in lactose intolerant patients: randomized trial. Eur Rev Med Pharmacol Sci 14(3):163–170PubMedGoogle Scholar
  7. 7.
    Tabbers MM, de Milliano I, Roseboom MG, Benninga MA (2011) Is Bifidobacterium breve effective in the treatment of childhood constipation? Results from a pilot study. Nutr J 10:19.  https://doi.org/10.1186/1475-2891-10-19 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Toh ZQ, Anzela A, Tang ML, Licciardi PV (2012) Probiotic therapy as a novel approach for allergic disease. Front Pharmacol 3:171.  https://doi.org/10.3389/fphar.2012.00171 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Panwar H, Calderwood D, Grant IR, Grover S, Green BD (2014) Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential. Eur J Nutr 53(7):1465–1474.  https://doi.org/10.1007/s00394-013-0649-9 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D et al (2001) In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am J Clin Nutr 73(2 Suppl):386S–392S.  https://doi.org/10.1093/ajcn/73.2.386s CrossRefPubMedGoogle Scholar
  11. 11.
    Bejar W, Farhat-Khemakhen A, Smaoui S, Makini M, Farhat MB et al (2011) Selection of Lactobacillus plantarum TN627 as a new probiotic candidate based on in vitro functional properties. Biotechnol Bioprocess Eng 16:1115–1123.  https://doi.org/10.1007/s12257-011-0198-0 CrossRefGoogle Scholar
  12. 12.
    Maxton A, Benjamin JC, Ram GD, Bailey SB, Ramteke PW (2013) Antibacterial activity of isolated human intestinal microbiota lactobacillus strains against methicillin resistant and susceptible Staphylococcus aureus. Afr J Microbiol Res 7:1802–1808CrossRefGoogle Scholar
  13. 13.
    Petrova M, Georgieva R, Dojchinovska L, Kirilov N, Iliev I et al (2009) Lactic acid bacteria against pathogenic microbes. Trakia J Sci 7(2):33–39Google Scholar
  14. 14.
    Bhola J, Bhadekar R (2019) In vitro synergistic activity of lactic acid bacteria against multi-drug resistant Staphylococci. BMC Complement Altern Med 19(1):70.  https://doi.org/10.1186/s12906-019-2470-3 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu Y, Zhao F, Liu J, Wang H, Han X, Zhang Y, Yang Z (2017) Selection of cholesterol-lowering lactic acid bacteria and its effects on rats fed with high-cholesterol diet. Curr Microbiol 74(5):623–631.  https://doi.org/10.1007/s00284-017-1230-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Šárka H, Milada P, Kateřina D (2017) Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 36(3):682–690.  https://doi.org/10.1016/j.biotechadv.2017.12.005 CrossRefGoogle Scholar
  17. 17.
    Papademas P, Parmaxi I, Aspri M (2015) Probiotic, antimicrobial, antioxidant and sensory properties of fermented donkey milk with Lactobacillus fermentum ME-3 and Lactobacillus acidophilus (ATCC 4356). BAOJ Microbiol 1:004Google Scholar
  18. 18.
    Filomena N, Pierangelo O, Florinda F, Raffaele C (2010) Isolation of components with antimicrobial property from the donkey milk: A preliminary study. Open Food Sci J 4:43–47CrossRefGoogle Scholar
  19. 19.
    Chiavari C, Coloretti F, Nanni M, Sorrentino E, Grazia L (2005) Use of donkey’s milk for a fermented beverage with lactobacilli. Lait 85(6):481–490.  https://doi.org/10.1051/lait:2005031 CrossRefGoogle Scholar
  20. 20.
    Mao X, Gu J (2009) Anti-proliferative and anti-tumor effect of active components in donkey milk on A549 human lung cancer cells. Int Dairy J 19:703–708CrossRefGoogle Scholar
  21. 21.
    Tafaro A, Magrone T, Jirillo F, Martemucci G, D'Alessandro AG et al (2007) Immunological properties of donkey's milk: its potential use in the prevention of atherosclerosis. Curr Pharm Des 13:3711–3717CrossRefGoogle Scholar
  22. 22.
    Soto Del Rio Mde L, Andrighetto C, Dalmasso A, Lombardi A, Civera T, Bottero MT (2016) Isolation and characterisation of lactic acid bacteria from donkey milk. J Dairy Res 83(3):383–386.  https://doi.org/10.1017/S002202991600037 CrossRefPubMedGoogle Scholar
  23. 23.
    Roos S, Karner F, Axelsson L, Jonsson H (2000) Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int J Syst Evol Microbiol 50:251–258CrossRefGoogle Scholar
  24. 24.
    Pavlova SI, Kilic AO, Kilic SS, So JS, Nader-Macias ME, Simoes JA, Tao L (2002) Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J Appl Microbiol 92(3):451–459CrossRefGoogle Scholar
  25. 25.
    London LE, Price NP, Ryan P, Wang L, Auty MA, Fitzgerald GF, Stanton C, Ross RP (2014) Characterization of a bovine isolate Lactobacillus mucosae DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues. J Appl Microbiol 117(2):509–517.  https://doi.org/10.1111/jam.12542 CrossRefPubMedGoogle Scholar
  26. 26.
    de Moraes GMD, de Abreu LR, do Egito AS, Salles HO, da Silva LMF et al (2017) Functional properties of Lactobacillus mucosae strains isolated from Brazilian goat milk. Probiotics Antimicrobiol Prot 9(3):235–245.  https://doi.org/10.1007/s12602-016-9244-8 CrossRefGoogle Scholar
  27. 27.
    Repally R, Perumal V, Dasari V, Palanichamy E, Venkatesan A (2018) Isolation, identification of Lactobacillus mucosae AN1 and its antilisterial peptide purification and characterization. Probiotics Antimicrobiol Prot 10(4):775–786.  https://doi.org/10.1007/s12602-017-9341-3 CrossRefGoogle Scholar
  28. 28.
    Lee JH, Valeriano VD, Shin YR, Chae JP, Kim GB et al (2012) Genome sequence of Lactobacillus mucosae LM1, isolated from piglet feces. J Bacteriol 194(170):4766–4245.  https://doi.org/10.1007/s12602-016-9244-8 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ryan MP, Stolte EH, London LEE, Wells JM, Long SL et al (2019) Lactobacillus mucosae DPC 6426 as a bile-modifying and immunomodulatory microbe. BMC Microbial 19(1):33.  https://doi.org/10.1186/s12866-019-1403-0 CrossRefGoogle Scholar
  30. 30.
    Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK (2009) Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS One 4(12):e8099.  https://doi.org/10.1371/journal.pone.0008099 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sirichokchatchawan W, Pupa P, Praechansri P, Am-In N, Tanasupawat S et al (2018) Autochthonous lactic acid bacteria isolated from pig faeces in Thailand show probiotic properties and antibacterial activity against enteric pathogenic bacteria. Microb Pathog 119:208–215.  https://doi.org/10.1016/j.micpath.2018.04.031 CrossRefPubMedGoogle Scholar
  32. 32.
    Shehata MG, El Sohaimy SA, El Sahn MA, Youssef MM (2016) Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann Agric Sci 61(1):65–75.  https://doi.org/10.1016/j.aoas.2016.03.001 CrossRefGoogle Scholar
  33. 33.
    Archer AC, Halami PM (2015) Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products. Appl Microbiol Biotechnol 99(19):8113–8123CrossRefGoogle Scholar
  34. 34.
    Nithya V, Halami PM (2013) Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Ann Microbiol 63(1):129–137.  https://doi.org/10.1007/s13213-012-0453-4 CrossRefGoogle Scholar
  35. 35.
    Jabbari V, Khiabani MS, Mokarram RR, Hassanzadeh AM, Ahmadi E, Gharenaghadeh S, Karimi N, Kafil HS (2017) Lactobacillus plantarum as a probiotic potential from kouzeh cheese (traditional Iranian cheese) and its antimicrobial activity. Probiotics Antimicrobiol Prot 9(2):189–193.  https://doi.org/10.1007/s12602-017-9255-0 CrossRefGoogle Scholar
  36. 36.
    Romero-Luna HE, Hernandez-Sanchez H, Ribas-Aparicio RM, Cauich-Sanchez PI, Davila-Ortiz G (2018) Evaluation of the probiotic potential of Saccharomyces cerevisiae strain (C41) isolated from tibicos by in vitro studies. Probiotics Antimicrobiol Prot 11(3):794–800.  https://doi.org/10.1007/s12602-018-9471-2 CrossRefGoogle Scholar
  37. 37.
    Norouzi H, Danesh A, Mohseni M, Rabbani Khorasgani M (2018) Marine actinomycetes with probiotic potential and bioactivity against multidrug-resistant bacteria. Int J Mol Cell Med 7(1):44–52.  https://doi.org/10.22088/IJMCM.BUMS.7.1.44 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cui X, Shi Y, Shanshan G, Yan X, Chen H, Ge J (2017) Antibacterial and antibiofilm activity of lactic acid bacteria isolated from traditional artisanal milk cheese from northeast china against enteropathogenic bacteria. Probiotics Antimicrobiol Prot 10(4):601–610.  https://doi.org/10.1007/s12602-017-9364-9 CrossRefGoogle Scholar
  39. 39.
    Perin LM, Miranda RO, Todorov SD, Franco BD, Nero LA (2014) Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int J Food Microbiol 185:121–126.  https://doi.org/10.1016/j.ijfoodmicro.2014.06.001 CrossRefPubMedGoogle Scholar
  40. 40.
    Martín R, Jiménez E, Olivares M, Marín ML, Fernández L et al (2006) Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J Food Microbiol 112(1):35–43.  https://doi.org/10.1016/j.ijfoodmicro.2006.06.011 CrossRefPubMedGoogle Scholar
  41. 41.
    Kudo H, Sasaki Y (2019) Intracellular pH determination for the study of acid tolerance of lactic acid bacteria: methods and protocols. Methods Mol Biol 1887:33–41.  https://doi.org/10.1007/978-1-4939-8907-2_4 CrossRefPubMedGoogle Scholar
  42. 42.
    Valeriano VD, Parungao-Balolong MM, Kang DK (2014) In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J Appl Microbiol 117(2):485–497.  https://doi.org/10.1111/jam.12539 CrossRefPubMedGoogle Scholar
  43. 43.
    Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S et al (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21(5):695–701.  https://doi.org/10.1016/j.foodcont.2009.10.010 CrossRefGoogle Scholar
  44. 44.
    Bautista-Gallego J, Arroyo-López FN, Rantsiou K, Jiménez-Díaz R, Garrido-Fernández A, Cocolin L (2013) Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Res Int 50(1):135–142.  https://doi.org/10.1016/j.foodres.2012.10.004 CrossRefGoogle Scholar
  45. 45.
    Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76:159–184CrossRefGoogle Scholar
  46. 46.
    Schär-Zammaretti P, Ubbink J (2003) The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophys J 85:4076–4092CrossRefGoogle Scholar
  47. 47.
    Doyle RJ (2000) Contribution of the hydrophobic effect to microbial infection. Microbes Infect 2:391–400CrossRefGoogle Scholar
  48. 48.
    Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073CrossRefGoogle Scholar
  49. 49.
    Bergeron N, Corriveau J, Letellier A, Daigle F, Lessard L, Quessy S (2009) Interaction between host cells and septicemic Salmonella enterica serovar typhimurium isolates from pigs. J Clin Microbiol 47(11):3413–3419.  https://doi.org/10.1128/JCM.00136-09 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    García-Cayuela TK, Ahmed M, Bustos I, de Cadinanos G et al (2014) Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 57:44–50.  https://doi.org/10.1016/j.foodres.2014.01.010 CrossRefGoogle Scholar
  51. 51.
    Palachum W, Chisti Y, Choorit W (2018) In vitro assessment of probiotic potential of Lactobacillus plantarum WU-P19 isolated from a traditional fermented herb. Ann Microbiol 68:79.  https://doi.org/10.1007/s13213-017-1318-7 CrossRefGoogle Scholar
  52. 52.
    Choi S-B, Lew L-C, Yeo S-K, Parvathy SN, Liong M-T (2015) Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario. Crit Rev Biotechnol 35(3):392–401.  https://doi.org/10.3109/07388551.2014.889077 CrossRefPubMedGoogle Scholar
  53. 53.
    Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9(5):521–536.  https://doi.org/10.3390/nu9050521 CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ahire JJ, Mokashe NU, Patil HJ, Chaudhari BL (2013) Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. J Food Sci Technol 50(1):26–34.  https://doi.org/10.1007/s13197-011-0244-0 CrossRefPubMedGoogle Scholar
  55. 55.
    Pourramezan Z, Kasra Kermanshahi R, Oloomi M, Aliahmadi A, Rezadoost H (2018) In vitro study of antioxidant and antibacterial activities of Lactobacillus probiotic spp. Folia Microbiol (Praha) 63(1):31–42.  https://doi.org/10.1007/s12223-017-0531 CrossRefGoogle Scholar
  56. 56.
    Strompfovà V, Laukovà A (2013) Isolation and characterization of faecal bifidobacteria and lactobacilli isolated from dogs and primates. Anaerobe 29:108–112.  https://doi.org/10.1007/10.1016/j.anaerobe.2013.10.007 CrossRefPubMedGoogle Scholar
  57. 57.
    Feng Y, Qiao L, Liu R, Yao H, Gao C (2017) Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. Ann Microbiol 67:239–253.  https://doi.org/10.1007/s13213-017-1254-6 CrossRefGoogle Scholar
  58. 58.
    Pithva S, Shekh S, Dave J, Vyas BR (2014) Probiotic attributes of autochthonous Lactobacillus rhamnosus strains of human origin. Appl Biochem Biotechnol 173(1):259–277.  https://doi.org/10.1007/s12010-014-0839-9 CrossRefPubMedGoogle Scholar
  59. 59.
    Ren D, Li C, Qin Y, Yin R, Du S et al (2014) In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30:1–10.  https://doi.org/10.1016/j.anaerobe.2014.07.004 CrossRefPubMedGoogle Scholar
  60. 60.
    61. Martín R, Olivares M, Marín ML, Fernández L, Xaus J, Rodríguez JM (2005) Probiotic potential of 3 Lactobacilli strains isolated from breast milk. J Hum Lact 21(1):8–17CrossRefGoogle Scholar
  61. 61.
    60. Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82:1–11CrossRefGoogle Scholar
  62. 62.
    Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R (2014) Antibiotic resistance among commercially available probiotics. Food Res Int 57:176–195.  https://doi.org/10.1016/j.foodres.2014.01.025 CrossRefGoogle Scholar
  63. 63.
    Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R (2015) Antibiotic resistance of Lactobacillus spp. isolated from commercial probiotic preparations. J Food Saf 36(1):38–51.  https://doi.org/10.1111/jfs.12211 CrossRefGoogle Scholar
  64. 64.
    Franz CMAP, Hummel A, Holzapfel WH (2005) Problems related to the safety assessment of lactic acid bacteria starter cultures and probiotics. Mitteil Geb Lebensm Hyg 96:39–65Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Amity Institute of Biotechnology,Amity University Uttar Pradesh, Lucknow CampusLucknowIndia
  2. 2.Department of MicrobiologyDr. Ram Manohar Lohia Institute of Medical SciencesLucknowIndia

Personalised recommendations