Advertisement

Comparison of Different Nisin Separation and Concentration Methods: Industrial and Cost-Effective Perspectives

  • Say-yed Hesameddin Tafreshi
  • Saeed MirdamadiEmail author
  • Shohreh Khatami
Article

Abstract

Separation and concentration of biotechnological products are the most important steps of purification stage in downstream processing. In the present study, three nisin separation and concentration methods including salting out by ammonium sulfate, solvent extraction (at 20 °C, 4 °C, and − 10 °C) and direct chromatography of culture medium were compared with each other. According to our results, nisin precipitation by ammonium sulfate at 40% saturation was the most efficient method (yield = 90.04%, purification fold = 168.80). Low yield and fold purification values were obtained by solvent extraction with chloroform (yield = 24.23%, fold purification = 37.43 at − 10 °C) and direct cation exchange chromatography of culture medium (yield = 20.00%, fold purification = 1.80). Also, performing purification steps in low pH values and acidic conditions (pH = 3.0) is essential for efficient nisin purification.

Keywords

Nisin Purification Precipitation Concentration Isolation 

Notes

Acknowledgments

We are grateful to Dr. Farzaneh Aziz Mohseni, head of Persian Type Culture Collection (PTCC) for providing us with the bacterial strains and Dr. Ali Sheikhinejad from Iranian Research Organization for Science and Technology (IROST) for his technical assistance with the SDS-PAGE analysis.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Singh VP (2018) Recent approaches in food bio-preservation. A review. Open Vet J 8(1):104–111.  https://doi.org/10.4314/ovj.v8i1.16 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipiĉ M et al (2017) Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA J 15(12):5063.  https://doi.org/10.2903/j.efsa.2017.5063 CrossRefGoogle Scholar
  3. 3.
    Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL (2016) Biomedical applications of nisin. J Appl Microbiol 120(6):1449–1465.  https://doi.org/10.1111/jam.13033 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kaur S, Kaur S (2015) Bacteriocins as potential anticancer agents. Front Pharmacol.  https://doi.org/10.3389/fphar.2015.00272
  5. 5.
    Maurício E, Rosado C, Duarte MP, Verissimo J, Bom S, Vasconcelos L (2017) Efficiency of nisin as preservative in cosmetics and topical products. Cosmetics 4(4):41.  https://doi.org/10.3390/cosmetics4040041 CrossRefGoogle Scholar
  6. 6.
    Zydney AL (2016) Continuous downstream processing for high value biological products: a review. Biotechnol Bioeng 113(3):465–475.  https://doi.org/10.1002/bit.25695 CrossRefGoogle Scholar
  7. 7.
    Hubbuch J, Kula MR (2007) Isolation and purification of biotechnological products. J Non-Equilib Thermodyn 32(2):99–127.  https://doi.org/10.1515/JNETDY.2007.004
  8. 8.
    Burianek LL, Yousef AE (2000) Solvent extraction of bacteriocins from liquid cultures. Lett Appl Microbiol 31:193–197.  https://doi.org/10.1046/j.1365-2672.2000.00802.x CrossRefPubMedGoogle Scholar
  9. 9.
    Xiao D, Michael Davidson P, D'Souza DH, Lin J, Zhong Q (2010) Nisin extraction capacity of aqueous ethanol and methanol from a 2.5% preparation. J food Eng 100(2):194–200.  https://doi.org/10.1016/j.jfoodeng.2010.03.044 CrossRefGoogle Scholar
  10. 10.
    Suárez AM, Azcona JI, Rodríguez JM, Sanz B, Hernández PE (1997) One-step purification of nisin A by immunoaffinity chromatography. Appl Environ Microbiol 63(12):4990–4992PubMedPubMedCentralGoogle Scholar
  11. 11.
    Prioult G, Turcotte C, Labarre L, Lacroix C, Fliss I (2000) Rapid purification of nisin Z using specific monoclonal antibody-coated magnetic beads. Int Dairy J 10(9):627–633.  https://doi.org/10.1016/S0958-6946(00)00093-5 CrossRefGoogle Scholar
  12. 12.
    Saavedra L, Castellano P, Sesma F (2004) Purification of bacteriocins produced by lactic acid bacteria. Methods Mol Biol 268:331–336.  https://doi.org/10.1385/1-59259-766-1:331 CrossRefPubMedGoogle Scholar
  13. 13.
    Garsa AK, Kumariya R, Sood SK, Kumar A, Kapila S (2014) Bacteriocin production and different strategies for their recovery and purification. Probiotics Antimicrob Proteins 6(1):47–58.  https://doi.org/10.1007/s12602-013-9153-z CrossRefPubMedGoogle Scholar
  14. 14.
    Choi HJ, Cheigh CI, Kim SB, Pyun YR (2000) Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. J Appl Microbiol 88(4):563–571.  https://doi.org/10.1046/j.1365-2672.2000.00976.x CrossRefPubMedGoogle Scholar
  15. 15.
    Lee KH, Moon GS, An JY, Lee HJ, Chang HC, Chung DK et al (2002) Isolation of a nisin producing Lactococcus lactis strain from Kimchi and characterization of its nisZ gene. J Microbiol Biotechnol 12(3):389–397Google Scholar
  16. 16.
    Gujarathi SS, Bankar SB, Ananthanarayan LA (2008) Fermentative production, purification and characterization of nisin. Int J Food Eng 4(5).  https://doi.org/10.2202/1556-3758.1386
  17. 17.
    Pongtharangkul T, Demirci A (2004) Evaluation of agar diffusion bioassay for nisin quantification. Appl Microbiol Biotechnol 65(3):268–272.  https://doi.org/10.1007/s00253-004-1579-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Jozala AF, Novaes LCL, Cholewa O, Moraes D, Vessoni Penna TC (2005) Increase of nisin production by Lactococcus lactis in different media. Afr J Biotechnol 4(3):262–265Google Scholar
  19. 19.
    Pongtharangkul T, Demirci A (2006) Evaluation of culture medium for nisin production in a repeated-batch biofilm reactor. Biotechnol Prog 22(1):217–224.  https://doi.org/10.1021/bp050295q CrossRefPubMedGoogle Scholar
  20. 20.
    Tafreshi SH, Mirdamadi S, Norouzian D, Khatami S, Sardari S (2010) Optimization of non-nutritional factors for a cost-effective enhancement of nisin production using orthogonal array method. Probiotics Antimicro Prot 2:267–273.  https://doi.org/10.1007/s12602-010-9051-6 CrossRefGoogle Scholar
  21. 21.
    Ahmed H (2005) Principles and reactions of protein extraction, purification, and characterization. CRC press, New YorkGoogle Scholar
  22. 22.
    Uteng M, Hauge HH, Brondz I, Nissen-Meyer J, Fimland G (2002) Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture medium. Appl Environ Microbiol 68(2):952–956.  https://doi.org/10.1128/AEM.68.2.952-956.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cleveland J, Chikindas M, Montville TJ (2002) Multimethod assessment of commercial nisin preparations. J Ind Microbiol Biotechnol 29(5):228–232.  https://doi.org/10.1038/sj.jim.7000315 CrossRefPubMedGoogle Scholar
  24. 24.
    Yang R, Johnson MC, Ray B (1992) Novel method to extract large amount of bacteriocins from lactic acid bacteria. Appl Environ Microbiol 58(10):3355–3359PubMedPubMedCentralGoogle Scholar
  25. 25.
    Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1-100 kDa. Anal Biochem 166(2):368–379.  https://doi.org/10.1016/0003-2697(87)90587-2 CrossRefPubMedGoogle Scholar
  26. 26.
    Mostafaee A (2003) Protein gel electrophoresis: the theory and practice guide. Kermanshah University of Medical Sciences Publishing Center, KermanshahGoogle Scholar
  27. 27.
    De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13(4):194–199.  https://doi.org/10.1159/000104752 CrossRefPubMedGoogle Scholar
  28. 28.
    Jamaluddin N, Stuckey DC, Ariff AB, Faizal Wong FW (2017) Novel approaches to purifying bacteriocin: a review. Crit Rev Food Sci Nutr 13:1–13.  https://doi.org/10.1080/10408398.2017.1328658 CrossRefGoogle Scholar
  29. 29.
    Crater JS, Lievense JC (2018) Scale-up of industrial microbial processes. FEMS Microbiol Lett 365(13):fny138.  https://doi.org/10.1093/femsle/fny138 CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Gottschalk U, Brorson K, Shukla AA (2012) The need for innovation in biomanufacturing. Nat Biotechnol 30(6):489–492.  https://doi.org/10.1038/nbt.2263 CrossRefPubMedGoogle Scholar
  31. 31.
    Jozala AF, Novaes LCL, Mazzola PG, Nascimento LO, Penna TCV, Teixeira JA et al (2015) Low-cost purification of nisin from milk whey to a highly active product. Food Bioprod Process 93:115–121.  https://doi.org/10.1016/j.fbp.2013.12.003 CrossRefGoogle Scholar
  32. 32.
    Holcapkova P, Raskova ZK, Martina Hrabalikova M, Salakova A, Drbohlav J, Sedlarik V (2017) Isolation and thermal stabilization of bacteriocin nisin derived from whey for antimicrobial modifications of polymers. Int J Polymer Sci.  https://doi.org/10.1155/2017/3072582 CrossRefGoogle Scholar
  33. 33.
    Cheigh C, Kook M, Kim S, Hong Y, Pyun Y (2004) Simple one-step purification of nisin Z from unclarified culture broth of Lactococcus lactis subsp. lactis A164 using expanded bed ion exchange chromatography. Biotechnol Lett 26(17):1341–1345.  https://doi.org/10.1023/B:BILE.0000045630.29494.45 CrossRefPubMedGoogle Scholar
  34. 34.
    Abts A, Mavaro A, Stindt J, Bakkes PJ, Metzger S, Driessen AJM et al (2011) Easy and rapid purification of highly active nisin. Int J Peptides.  https://doi.org/10.1155/2011/175145 CrossRefGoogle Scholar
  35. 35.
    Wong FWF, Ariff AB, Stuckey DC (2018) Downstream protein separation by surfactant precipitation: a review. Crit Rev Biotechnol 38(1):31–46.  https://doi.org/10.1080/07388551.2017.1312266 CrossRefPubMedGoogle Scholar
  36. 36.
    Davies EA, Bevis HE, Potter R, Harris J, Williams GC, Delves-Broughton J (1998) Research note: the effect of pH on the stability of nisin solution during autoclaving. Lett Appl Microbiol 27:186–187.  https://doi.org/10.1046/j.1472-765X.1998.t01-1-00401.x CrossRefGoogle Scholar
  37. 37.
    Gough R, Gómez-Sala B, O'Connor PM, Rea MC, Miao S, Hill C, Brodkorb A (2017) A simple method for the purification of nisin. Probiotics Antimicrob Proteins 9(3):363–369.  https://doi.org/10.1007/s12602-017-9287-5 CrossRefPubMedGoogle Scholar
  38. 38.
    Rollema HS, Kuipers OP, Both P, de Vos WM, Siezen RJ (1995) Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl Environ Microbiol 61(8):2873–2878PubMedPubMedCentralGoogle Scholar
  39. 39.
    Yang SC, Lin CH, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241.  https://doi.org/10.3389/fmicb.2014.00241 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mulders JWM, Boerrigter IJ, Rollema HS, Siezen RJ, De Vos WM (1991) Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem 201(3):581–584.  https://doi.org/10.1111/j.1432-1033.1991.tb16317.x CrossRefPubMedGoogle Scholar
  41. 41.
    Janes ME, Nannapaneni R, Proctor A, Johnson MG (1998) Rice hull ash and silicic acid as adsorbents for concentration of bacteriocins. Appl Environ Microbiol 64(11):4403–4409PubMedPubMedCentralGoogle Scholar
  42. 42.
    Gupta SM, Aranha CC, Reddy KVR (2008) Evaluation of developmental toxicity of microbicide nisin in rats. Food Chem Toxicol 46(2):598–603.  https://doi.org/10.1016/j.fct.2007.09.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Say-yed Hesameddin Tafreshi
    • 1
  • Saeed Mirdamadi
    • 2
    Email author
  • Shohreh Khatami
    • 3
  1. 1.Vaccine R&D Unit, Research and Production ComplexPasteur Institute of IranAlborzIran
  2. 2.Biotechnology DepartmentIranian Research Organization for Science and TechnologyTehranIran
  3. 3.Biochemistry DepartmentPasteur Institute of IranTehranIran

Personalised recommendations