The Application of Lactobacillus reuteri CCM 8617 and Flaxseed Positively Improved the Health of Mice Challenged with Enterotoxigenic E. coli O149:F4

  • Z. AndrejčákováEmail author
  • D. Sopková
  • R. Vlčková
  • Z. Hertelyová
  • S. Gancarčíková
  • R. Nemcová


The aim of our study was to monitor the effects of dietary synbiotics on experimentally infected mice. Sixty mice were divided into the following three groups: negative control group C1, positive control group C2 (mice infected with enterotoxigenic Escherichia coli O149:F4NAL), and experimental group LF (Lactobacillus reuteri CCM 8617RIF + 10% flaxseed + E. coli O149:F4NAL). Supplements were administered for 42 days. Microbiological, hematological, and biochemical analyses, electrophoretic analysis of lactate dehydrogenase (LDH) isoenzymes, and analysis of fatty acids using gas chromatography and isotachophoresis were performed. We recorded higher numbers of jejunal and ileal lactic acid bacteria, lower Enterobacteriaceae counts in the feces of the animals, and an increased production of organic acids in the synbiotic-fed group. The supplements applied favored n−3 polyunsaturated fatty acid (PUFA) metabolism and inhibited n−6 PUFA metabolism; thus, they influenced the n−6 to n−3 and eicosapentaenoic to arachidonic acid ratios. Additionally, the incorporation of n−3 PUFAs to the cell membrane decreased the activity of LDH, transaminases, and alkaline phosphatase. Results obtained in our study indicate the positive effect of continuous supplementation of combination of probiotic cheese enriched with L. reuteri CCM 8617RIF and crushed flaxseed on composition of intestinal microflora and alleviation of the course of infection induced by pathogenic bacterium E. coli O149:F4NAL.


Probiotic Flaxseed Lactobacillus E. coli Mice Infection 



We would like to thank Assoc. Prof. Stewart Odendhal, DVM, PhD., for the English correction.

Funding information

This work was financially supported by the projects of the Ministry of Education, Science, Research and Sport of the Slovak Republic No. 1/0476/16 and No. 1/0241/18.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Fuller R (1989) Probiotics in man and animals. A review. J Appl Bacteriol 66(5):365–378. Google Scholar
  2. 2.
    Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S (1999) Probiotics: mechanisms and established effects. Int Dairy J 9(1):43–52. Google Scholar
  3. 3.
    Nova E, Warnberg J, Gomez-Martinez S, Diaz LE, Romeo J, Marcos A (2007) Immunomodulatory effects of probiotics in different stages of life. Br J Nutr 98(1):90–95. Google Scholar
  4. 4.
    Sanders ME, Gibson G, Harsharnjit SG, Guarner F (2007) Probiotics: their potential to impact human health. In: Council for Agricultural Science and Technology issue paper, Central archive at the University of Reading, vol 36. CAST, Ames, pp 1–20 Google Scholar
  5. 5.
    Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300(1):57–62. Google Scholar
  6. 6.
    Strojný L, Štofilová J, Hijová E, Szabadosová V, Salaj R, Bertková I, Chmelárová A, Čokášová D, Pramuková B, Brandeburová A, Bomba A, Bobrov N, Suchánek P (2014) Effect of Lactobacillus plantarum LS/07 in combination with flaxseed oil on the microflora, enzymatic activity, and histological changes in the development of chemically induced precancerous growth in the rat colon. Czech J Anim Sci 59(6):268–277. Google Scholar
  7. 7.
    Markowiak P, Śliżewska K (2017) Effect of probiotics, prebiotics, and synbiotics on human health. Nutrients 9:1021. Google Scholar
  8. 8.
    Bomba A, Brandeburová A, Ričanyová J, Strojný L, Chmelárová A, Szabadosová V, Pramuková P, Žofčáková J, Salaj R, Supuková A, Čokášová D (2012) The role of probiotics and natural bioactive compounds in modulation of the common molecular pathways in pathogenesis of atherosclerosis and cancer. Biologia 67(1):1–13. Google Scholar
  9. 9.
    Van Den Abbeele P, Venema K, Van de Wiele T, Verstraete W, Possemiers S (2013) Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin. J Agric Food Chem 61(41):9819–9827. Google Scholar
  10. 10.
    Sivieri K, Morales MLV, Saad SMI, Adorno MAT, Sakamoto IK, Rossi EA (2014) Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME (R) model). J Med Food 17(8):894–901. Google Scholar
  11. 11.
    Giada Mde L (2010) Food applications for flaxseed and its components: products and processing. Recent Pat Food Nutr Agric 2(3):181–186. Google Scholar
  12. 12.
    Kašteľ R, Tučková M, Vaško L, Pistl J, Revajová V, Eliáš D, Bugarský A, Levkut M, Bindas Ľ, Bomba A, Šajbidor J (2003) The effect of oil with elevated content of n−3 polyunsaturated fatty acids (PUFA) on some metabolic and immunological parameters in germ-free and conventional piglets. CJAS 48(6):233–238Google Scholar
  13. 13.
    Davis BC, Kris-Etherton PM (2003) Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr 78(3):640–646. Google Scholar
  14. 14.
    Kim YS, Milner JA (2007) Dietary modulation of colon cancer risk. J Nutr 137(11):2576–2579. Google Scholar
  15. 15.
    Choi YS, Lee JK, Jung JT, Jung YC, Jung JH, Jung MO, Choi YI, Jin SK, Choi JS (2016) Comparison of meat quality and fatty acid composition of longissimus muscles from purebred pigs and three-way crossbred LYD pigs. Korean J Food Sci Anim Resour 36(5):689–696. Google Scholar
  16. 16.
    Scollan ND, Fisher AV, Enser M, Wood JD (2001) Manipulating the fatty acid composition of muscle in beef cattle. Br J Nutr 85(1):115–124. Google Scholar
  17. 17.
    Wachira AM, Sinclair LA, Wilkinson RG, Ener M, Wood JD, Fisher AV (2002) Effects of dietary fat source and breed on the carcass composition, n−3 polyunsaturated fatty acid and conjugated linoleic acid content of sheep meat and adipose tissue. Br J Nutr 88(6):697–709. Google Scholar
  18. 18.
    Zelenka J, Jarošová A, Schneiderová D (2008) Influence of n−3 and n−6 polyunsaturated fatty acids on sensory characteristics of chicken meat. Czech J Anim Sci 53(7):299–305 Google Scholar
  19. 19.
    Andrejčáková Z, Sopková D, Vlčková R, Kulichová L, Gancarčíková S, Almášiová V, Holovská K, Petrilla V, Krešáková L (2016) Synbiotics suppress the release of lactate dehydrogenase, promote non-specific immunity and integrity of jejunum mucosa in piglets. Anim Sci J 87(9):1157–1166. Google Scholar
  20. 20.
    Sopková D, Hertelyová Z, Andrejčáková Z, Vlčková R, Gancarčíková S, Petrilla V, Ondrašovičová S, Krešáková L (2017) The application of probiotics and flaxseed promotes metabolism of n−3 polyunsaturated fatty acids in pigs. J Appl Anim Res 45(1):93–98. Google Scholar
  21. 21.
    Borovská D, Nemcová R, Mudroňová D, Šumichrastová J (2012) The use of polysaccharides from a standpoint of increasing the functionality of probiotic bacteria. Slovak Vet J 37:344–346Google Scholar
  22. 22.
    Slížová M, Nemcová R, Maďar M, Hádryová J, Gancarčíková S, Popper M, Pistl J (2015) Analysis of biofilm formation by intestinal lactobacilli. Can J Microbiol 61(6):437–446. Google Scholar
  23. 23.
    Gancarčíková S, Nemcová R, Popper M, Hrčková G, Sciranková Ľ, Maďar M, Mudroňová D, Vilček Š, Žitňan R (2019) The influence of feed-supplementation with probiotic strain Lactobacillus reuteri CCM 8617 and alginite on intestinal microenvironment of SPF mice infected with Salmonella Typhimurium CCM 7205. Probiotics Antimicrob Proteins 11:493–508. Google Scholar
  24. 24.
    Heinová D, Rosival I, Avidar Y, Bogin E (1999) Lactate dehydrogenase isoenzyme distribution and patterns in chicken organs. Res Vet Sci 67(3):309–312. Google Scholar
  25. 25.
    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing. The principle of protein–dye binding. Anal Biochem 72:248–254Google Scholar
  26. 26.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509Google Scholar
  27. 27.
    Pošiváková T, Hromada R, Laktičová KV, Vargová M, Korytár Ľ, Švajlenka J, Húska M, Hatalová E, Pošivák J, Klein R (2017) Concentrations of selected toxic elements in ewe living near an environmentally loaded area of eastern part of Slovakia. Ann Agric Environ Med 24(4):667–670. Google Scholar
  28. 28.
    Vlčková R, Andrejčáková Z, Sopková D, Hertelyová Z, Kozioł K, Koziorowski M, Gancarčíková S (2018) Supplemental flaxseed modulates ovarian functions of weanling gilts via the action of selected fatty acids. Anim Reprod Sci 193:171–181. Google Scholar
  29. 29.
    Juárez M, Dugan MER, Aalhus JL, Aldai N, Basarab JA, Baron VS, McAllister TA (2011) Effects of vitamin E and flaxseed on rumen-derived fatty acid intermediates in beef intramuscular fat. Meat Sci 88(3):434–440. Google Scholar
  30. 30.
    El-Waseif MA, Abd El-Dayem HH, Hashem HA, El-Behairy SA (2014) Hypolipidemic effect of fat spreads containing flaxseed oil. Anal Agri Sci 59(1):17–24. Google Scholar
  31. 31.
    Park S, Bae JH (2015) Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res 35(7):566–575. Google Scholar
  32. 32.
    John GK, Wang L, Nanavati J, Twose C, Singh R, Mullin G (2018) Dietary alteration of the gut microbiome and its impact on weight and fat mass: a systematic review and meta-analysis. Genes 9(3):167. Google Scholar
  33. 33.
    Estwood L, Kish PR, Beaulieu AD, Leterme P (2009) Nutritional value of flaxseed meal for swine and its effect on the fatty acid profile of the carcass. J Animal Sci (JAS) 87(11):3607–3619. Google Scholar
  34. 34.
    Li O, Brendemuhl JH, Jeong KC, Badinga L (2014) Effect of dietary omega-3 polyunsaturated fatty acids on growth and imune response of weanling pigs. J Anim Sci Technol 56:7. Google Scholar
  35. 35.
    Ndou SP, Kiarie E, Walsh MC, Nyyachoti CM (2018) Nutritive value of flaxseed meal fed to growing pigs. Anim Feed Sci Technol 238:123–129. Google Scholar
  36. 36.
    Ndou SP, Kiarie E, Ames N, Nyyachoti CM (2019) Flaxseed meal and oat hulls supplementation: impact on dietary fiber digestibility, and flows of fatty acids and bile acids in growing pigs. J Animal Sci (JAS) 97(1):291–301. Google Scholar
  37. 37.
    Nussinovitch M, Finkelstein Y, Elishkevitz KP, Volovitz B, Harel D, Klinger G, Razon Y, Nussinovitch U, Nussinovitch N (2009) Cerebrospinal fluid lactate dehydrogenase isoenzymes in children with bacterial and aseptic meningitis. Transl Res 154(4):214–218. Google Scholar
  38. 38.
    Crémet L, Broquet A, Brulin B, Jacqueline C, Dauvergne S, Brion R, Asehnoune K, Corvec S, Heymann D, Caroff N (2015) Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog Dis 73(8):ftv065. Google Scholar
  39. 39.
    Legrand C, Bour JM, Capiaumont J, Martial A, Marc A, Wudtke M, Kretzmer G, Demangel C, Duval D, Hache J (1992) Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J Biotechnol 25(3):231–243. Google Scholar
  40. 40.
    Kending DM, Tarloff JB (2007) Inactivation of lactate dehydrogenase by several chemicals: implications for in vitro toxicology studies. Toxicol in Vitro 21(1):125–132. Google Scholar
  41. 41.
    Ghoneim MA, Moselhy SS (2014) Impact of probiotic-supplemented diet on the expression level of lactate dehydrogenase in the leukocytes of rabbits. Toxicol Ind Health 30(3):225–232. Google Scholar
  42. 42.
    Manafi M, Hedayati M, Mirzaie S (2018) Probiotic Bacillus species and Saccharomyces boulardii improve performance, gut histology and immunity in broiler chickens. S Afr J Anim Sci 48(2):379–389 Google Scholar
  43. 43.
    Hussein SA, El Senosi YAF, Hassanien MR, Hammad M-MF (2016) Evaluation of the protective role of flaxseed oil on inflammatory mediators, antioxidant defense system and oxidative stress of liver tissue in hypercholesterolemic rats. Int J Pharm Sci 6(3):1480–1489 Google Scholar
  44. 44.
    Ma DW, Seo J, Switzer KC, Fan YY, McMurray DN, Lupton JR, Chapkin RS (2004) n−3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J Nutr Biochem 15(11):700–706. Google Scholar
  45. 45.
    Feller SE (2008) Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. Chem Phys Lipids 153(1):76–80. Google Scholar
  46. 46.
    Das UN (2006) Essential fatty acids—a review. Curr Pharm Biotechnol 7(6):467–482. Google Scholar
  47. 47.
    Das UN (2005) A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fat Acids 72(5):343–350. Google Scholar
  48. 48.
    Nemcová R, Borovská D, Koščová J, Gancarčíková S, Mudroňová D, Buleca V, Pistl J (2012) The effect of supplementation of flax-seed oil on interaction of Lactobacillus plantarum—Biocenol™ LP96 and Escherichia coli O8:K88ab:H9 in the gut of germ-free piglets. Res Vet Sci 93(1):39–41. Google Scholar
  49. 49.
    Chytilová M, Mudroňová D, Nemcová R, Gancarčíková S, Buleca V, Koščová J, Tkáčiková Ľ (2013) Anti-inflammatory and immunoregulatory effects of flax-seed oil and Lactobacillus plantarum—Biocenol™ LP96 in gnotobiotic pigs challenged with enterotoxigenic Escherichia coli. Res Vet Sci 95(1):103–109. Google Scholar
  50. 50.
    Chytilová M, Nemcová R, Gancarčíková S, Mudroňová D, Tkáčiková Ľ (2014) Flax-seed oil and Lactobacillus plantarum supplementation modulate TLR and NF-κB gene expression in enterotoxigenic Escherichia coli challenged gnotobiotic pigs. Acta Vet Hung 62(4):463–472. Google Scholar
  51. 51.
    Ringo E, Bendiksen HR, Gausen SJ, Sundsfjord A, Olsen RE (1998) The effect of dietary fatty acids on lactic acid bacteria associated with the epithelial mucosa and from faecalia of Arctic charr, Salvelinus alpinus (L.). J Appl Microbiol 85:855–864. Google Scholar
  52. 52.
    Bomba A, Nemcová R, Gancarčíková S, Herich R, Pistl J, Révajová V, Levkut M, Kašteľ R, Lazar G, Hluchý M, Baran M, Bugarský A (2003) The influence of ω-3 polyunsaturated fatty acids (ω-3 pufa) on lactobacilli adhesion to the intestinal mucosa and on immunity in gnotobiotic piglets. Berl Münch Tierärztl Wchsr 116:312–316 Google Scholar
  53. 53.
    Nieto N, Torres MI, Ríos A, Gil A (2002) Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. J Nutr 132:11–19. Google Scholar
  54. 54.
    Kiarie E, Nyachoti CM, Slominski BA, Blank G (2014) Growth performance, gastrointestinal microbial activity, and nutrient digestibility in early-weaned pigs fed diets containing flaxseed and carbohydrase enzyme. J Anim Sci 85(11):2982–2993. Google Scholar
  55. 55.
    Scholz-Ahrens KE, Adolphi B, Rochat F, Barclay DV, de Vrese M, Açil Y, Schrezenmeir J (2016) Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats—impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over. NFS J 3:41–50. Google Scholar
  56. 56.
    Okeke F, Roland BC, Mullin GE (2014) The role of the gut microbiome in the pathogenesis and treatment of obesity. Glob Adv Health Med 3(3):44–57. Google Scholar
  57. 57.
    Hemalatha R, Ouwehand AC, Saarinen MT, Prasad UV, Swetha K, Bhaskar V (2017) Effect of probiotic supplementation on total lactobacilli, bifidobacteria and short chain fatty acids in 2–5-year-old children. Microb Ecol Health Dis 28(1):1298340. Google Scholar
  58. 58.
    Nishimura T, Andoh A, Hashimoto T, Kobori A, Tsujikawa T, Fujiyama Y (2010) Cellobiose prevents the development of dextran sulfate sodium (DSS)-induced experimental colitis. J Clin Biochem Nutr 46(2):105–110. Google Scholar
  59. 59.
    Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3(10):858–876. Google Scholar
  60. 60.
    Vieira EL, Leonel AJ, Sad AP, Beltrão NR, Costa TF, Ferreira TM, Gomes-Santos AC, Faria AM, Peluzio MC, Cara DC, Alvarez-Leite JI (2012) Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem 23(5):430–436. Google Scholar
  61. 61.
    Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185. Google Scholar
  62. 62.
    Fodje AM, Chang PR, Leterme P (2009) In vitro bile acid binding and short-chain fatty acid profile of flax fiber and ethanol co-products. J Med Food 12(5):1065–1073. Google Scholar
  63. 63.
    Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19(1):29–41. Google Scholar
  64. 64.
    Scheppach W, Weiler F (2004) The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 7(5):563–567 Google Scholar
  65. 65.
    Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7(4):2839–2849. Google Scholar
  66. 66.
    Cherbut C (2003) Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 62(1):95–99. Google Scholar
  67. 67.
    Darzi J, Frost GS, Montaser R, Yap J, Robertson MD (2014) Influence of the tolerability of vinegar as an oral source of short-chain fatty acids on appetite control and food intake. Int J Obes 38(5):675–681. Google Scholar
  68. 68.
    Fechner A, Kiehntopf M, Jahreis G (2014) The formation of short-chain fatty acids is positively associated with the blood lipid-lowering effect of lupin kernel fiber in moderately hypercholesterolemic adults. J Nutr 144(5):599–607. Google Scholar
  69. 69.
    Bolognini D, Tobin AB, Milligan G, Moss CE (2016) The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol 89(3):388–398. Google Scholar
  70. 70.
    Bečková R, Václavková E (2010) The effect of linseed diet on carcass value traits and fatty acid composition in muscle and fat tissue of fattening pigs. Czech J Anim Sci 55(8):313–320. Google Scholar
  71. 71.
    Grofová Z (2010) Mastné kyseliny. (In Slovak). Medicína Pro Praxi 7:388–390 Google Scholar
  72. 72.
    Perini JAL, Stevanato FB, Visentainer JEL, Sargi SC, Oliveira MM, Souza NE, Matsushita M, Visentainer JV (2011) Incorporation of n−3 fatty acids by the liver of mice fed linseed oil as a function of feeding duration. Braz Arch Biol Technol 54(2):307–313 Google Scholar
  73. 73.
    Gusnstone FD (2012) Fatty acids and lipid chemistry. Springer, United Kingdom, LondonGoogle Scholar
  74. 74.
    Tang X, Li ZJ, Xu J, Xue Y, Li JZ, Wang JF, Yanagita T, Xue CH, Wang YM (2012) Short term effects of different omega-3 fatty acid formulation on lipid metabolism in mice fed high or low fat diet. Lipids Health Dis 11:70. Google Scholar
  75. 75.
    Zhou D, Ghebremeskel K, Crawford MA, Reifen R (2006) Vitamin A deficiency enhances docosahexaenoic and osbond acids in liver of rats fed an alpha linolenic acid-adequate diet. Lipids 41(3):213–219. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Physiology, Department of Anatomy, Histology and PhysiologyUniversity of Veterinary Medicine and Pharmacy in KošiceKošiceSlovak Republic
  2. 2.Department of Experimental Medicine, Faculty of MedicinePavol Jozef Šafarik UniversityKošiceSlovak Republic
  3. 3.Institute of Microbiology and GnotobiologyUniversity of Veterinary Medicine and Pharmacy in KošiceKošiceSlovak Republic

Personalised recommendations