Skip to main content
Log in

Downregulation of Salmonella Virulence Gene Expression During Invasion of Epithelial Cells Treated with Lactococcus lactis subsp. cremoris JFR1 Requires OppA

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Invasion of Salmonella into host intestinal epithelial cells requires the expression of virulence genes. In this study, cell culture models of human intestinal cells (mucus-producing HT29-MTX cells, absorptive Caco-2 cells, and combined cocultures of the two) were used to determine the effects of Lactococcus lactis subsp. cremoris treatments (exopolysaccharide producing and nonproducing strains) on the virulence gene expression of Salmonella Typhimurium and its mutant lacking the oligopeptide permease subunit A (ΔoppA). During the course of epithelial cell (HT29-MTX, Caco-2, and combined) infection by Salmonella Typhimurium DT104, improved barrier function was reflected by increased transepithelial electrical resistance in cells treated with both strains of L. lactis subsp. cremoris. In addition, virulence gene expression was downregulated, accompanied with lower numbers of invasive bacteria into epithelial cells in the presence of L. lactis subsp. cremoris treatments. Similarly, virulence gene expression of Salmonella was also suppressed when coincubated with overnight cultures of both L. lactis subsp. cremoris strains in the absence of epithelial cells. However, in medium or in the presence of cell cultures, Salmonella lacking the OppA permease function remained virulent. HT29-MTX cells and combined cultures stimulated by Salmonella Typhimurium DT104 showed significantly lower secretion levels of pro-inflammatory cytokine IL-8 after treatment with L. lactis subsp. cremoris cell suspensions. Contrarily, these responses were not observed during infection with S. Typhimurium ΔoppA. Both the exopolysaccharide producing and nonproducing strains of L. lactis subsp. cremoris JFR1 exhibited an antivirulence effect against S. Typhimurium DT104 although no significant difference between the two strains was observed. Our results show that an intact peptide transporter is essential for the suppression of Salmonella virulence genes which leads to the protection of the barrier function in the cell culture models studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ohland CL, MacNaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Gastrointest Liver Physiol 298:G807–G819. https://doi.org/10.1152/ajpgi.00243.2009

    Article  CAS  Google Scholar 

  2. Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335. https://doi.org/10.1038/nri3430

    Article  CAS  PubMed  Google Scholar 

  3. Suenaert P, Bulteel V, Lemmens L, Noman M, Geypens B, Assche GV, Geboes K, Ceuppens JL, Rutgeerts P (2002) Anti-tumor necrosis factor treatment restores the gut barrier in Crohn’s disease. Am J Gastroenterol 97:2000–2004. https://doi.org/10.1111/j.1572-0241.2002.05914.x

    Article  CAS  PubMed  Google Scholar 

  4. Al-Sadi R, Ye D, Boivin M et al (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9:e85345. https://doi.org/10.1371/journal.pone.0085345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amasheh M, Grotjohann I, Amasheh S, Fromm A, Söderholm JD, Zeitz M, Fromm M, Schulzke JD (2009) Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma in vitro: a novel model for studying the pathomechanisms of inflammatory bowel disease cytokines. Scand J Gastroenterol 44:1226–1235. https://doi.org/10.1080/00365520903131973

    Article  CAS  PubMed  Google Scholar 

  6. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166:409–419. https://doi.org/10.1016/S0002-9440(10)62264-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ye D, Ma I, Ma TY (2006) Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol-Gastrointest Liver Physiol 290:G496–G504. https://doi.org/10.1152/ajpgi.00318.2005

    Article  CAS  PubMed  Google Scholar 

  8. Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177:512–524. https://doi.org/10.2353/ajpath.2010.100168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyle EC, Brown NF, Finlay BB (2006) Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol 8:1946–1957. https://doi.org/10.1111/j.1462-5822.2006.00762.x

    Article  CAS  PubMed  Google Scholar 

  10. Rokana N, Mallappa RH, Batish VK et al (2017) Interaction between putative probiotic Lactobacillus strains of Indian gut origin and Salmonella: impact on intestinal barrier function. LWT- Food Sci Technol 84:851–860

    Article  CAS  Google Scholar 

  11. Matsuzawa T, Kuwae A, Yoshida S, Sasakawa C, Abe A (2004) Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 23:3570–3582. https://doi.org/10.1038/sj.emboj.7600359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altier C (2005) Genetic and environmental control of Salmonella invasion. J Microbiol 43:85–92

    CAS  PubMed  Google Scholar 

  13. Galán JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86. https://doi.org/10.1146/annurev.cellbio.17.1.53

    Article  PubMed  Google Scholar 

  14. Zhou D, Galán J (2001) Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3:1293–1298. https://doi.org/10.1016/S1286-4579(01)01489-7

    Article  CAS  PubMed  Google Scholar 

  15. Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, de Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterol 121:580–591. https://doi.org/10.1053/gast.2001.27224

    Article  CAS  Google Scholar 

  16. Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997. https://doi.org/10.1136/gut.52.7.988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson-Henry KC, Donato KA, Shen-Tu G, Gordanpour M, Sherman PM (2008) Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect Immun 76:1340–1348. https://doi.org/10.1128/IAI.00778-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heinemann C, van Hylckama V (2000) Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis. FEMS Microbiol J 190:177–180

    Article  CAS  Google Scholar 

  19. Johnson-Henry KC, Hagen KE, Gordonpour M, Tompkins TA, Sherman PM (2007) Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol 9:356–367. https://doi.org/10.1111/j.1462-5822.2006.00791.x

    Article  CAS  PubMed  Google Scholar 

  20. Bayoumi MA, Griffiths MW (2012) In vitro inhibition of expression of virulence genes responsible for colonization and systemic spread of enteric pathogens using Bifidobacterium bifidum secreted molecules. Int J Food Microbiol 156:255–263. https://doi.org/10.1016/j.ijfoodmicro.2012.03.034

    Article  CAS  PubMed  Google Scholar 

  21. Zhang JS, Guri A, Corredig M, Morales-Rayas R, Hassan A, Griffiths M, LaPointe G (2016) Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro. Food Res Int 90:147–153. https://doi.org/10.1016/j.foodres.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  22. Tellez A, Corredig M, Turner PV, Morales R, Griffiths M (2011) A peptidic fraction from milk fermented with Lactobacillus helveticus protects mice against Salmonella infection. Int Dairy J 21:607–614. https://doi.org/10.1016/j.idairyj.2011.03.011

    Article  CAS  Google Scholar 

  23. Mahler GJ, Shuler ML, Glahn RP (2009) Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem 20(7):494–502. https://doi.org/10.1016/j.jnutbio.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  24. Lepine AFP, de Wit N, Oosterink E, Wichers H, Mes J, de Vos P (2018) Lactobacillus acidophilus attenuates Salmonella-induced stress of epithelial cells by modulating tight-junction genes and cytokine responses. Front Microbiol 9:1439

    Article  PubMed  PubMed Central  Google Scholar 

  25. Polewski MA, Krueger CG, Reed JD, Leyer G (2016) Ability of cranberry proanthocyanidins in combination with a probiotic formulation to inhibit in vitro invasion of gut epithelial cells by extra-intestinal pathogen E. coli. J Funct Foods 25:123–134

    Article  CAS  Google Scholar 

  26. Hilgendorf C, Spahn-Langguth H, Regårdh CG, Lipka E, Amidon GL, Langguth P (2000) Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside-and outside-directed carrier-mediated transport. J Pharm Sci 89:63–75

    Article  CAS  PubMed  Google Scholar 

  27. Velayudhan J, Karlinsey JE, Frawley ER, Becker LA, Nartea M, Fang FC (2014) Distinct roles of the Salmonella enterica serovar Typhimurium CyaY and YggX proteins in the biosynthesis and repair of iron-sulfur clusters. Infect Immun 82:1390–1401. https://doi.org/10.1128/IAI.01022-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma S (2014) Antivirulence activities of bioactive peptides produced by Lactobacillus helveticus and Lactobacillus acidophilus against Salmonella enterica serovar Typhimurium. Dissertation, University of Guelph

  29. Rahn K, De Grandis SA, Clarke RC et al (1992) Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6:271–279. https://doi.org/10.1016/0890-8508(92)90002-F

    Article  CAS  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  31. Phongsisay V, Perera VN, Fry BN (2007) Evaluation of eight RNA isolation methods for transcriptional analysis in Campylobacter jejuni. J Microbiol Methods 68:427–429. https://doi.org/10.1016/j.mimet.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  32. Kleiveland CR (2015) Co-cultivation of Caco-2 and HT-29-MTX. In: Verhoeckx K et al (eds) The impact of food bioactives on health. Springer, Cham, pp 135–140

    Google Scholar 

  33. Koziolek M, Grimm M, Becker D, Iordanoc V, Zou H, Shimizu J, Wanke C, Garbacz G, Weitschies W (2015) Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap® system. J Pharm Sci 104(9):2855–2863

    Article  CAS  PubMed  Google Scholar 

  34. Berntssen RP, Doeven MK, Fusetti F et al (2009) The structural basis for peptide selection by the transport receptor OppA. EMBO J 28:1332–1340

    Article  Google Scholar 

  35. Goodell EW, Higgins CF (1987) Uptake of cell wall peptides by Salmonella Typhimurium and Escherichia coli. J Bacteriol 169:3861–3865. https://doi.org/10.1128/jb.169.8.3861-3865.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borezee E, Pellegrini E, Berche P (2000) OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun 68:7069–7077. https://doi.org/10.1128/IAI.68.12.7069-7077.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gominet M, Slamti L, Gilois N, Rose M, Lereclus D (2001) Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol 40:963–975. https://doi.org/10.1046/j.1365-2958.2001.02440.x

    Article  CAS  PubMed  Google Scholar 

  38. Samen U, Gottschalk B, Eikmanns BJ, Reinscheid DJ (2004) Relevance of peptide uptake systems to the physiology and virulence of Streptococcus agalactiae. J Bacteriol 186:1398–1408. https://doi.org/10.1128/JB.186.5.1398-1408.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406

    Article  CAS  PubMed  Google Scholar 

  40. Hiles ID, Higgins CF (1986) Peptide uptake by Salmonella Typhimurium—the periplasmic oligopeptide binding protein. Eur J Biochem 158:561–567. https://doi.org/10.1111/j.1432-1033.1986.tb09791.x

    Article  CAS  PubMed  Google Scholar 

  41. Abouhamad WN, Manson M, Gibson MM, Higgins CF (1991) Peptide transport and chemotaxis in Escherichia coli and Salmonella Typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol 5:1035–1047

    Article  CAS  PubMed  Google Scholar 

  42. Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, McClelland M, Fang FC, Miller SI (2003) Regulation of Salmonella Typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol 50:219–230. https://doi.org/10.1046/j.1365-2958.2003.03675.x

    Article  CAS  PubMed  Google Scholar 

  43. Zeinhom M, Tellez AM, Delcenserie V et al (2012) Yogurt containing bioactive molecules produced by Lactobacillus acidophilus La-5 exerts a protective effect against enterohemorrhagic Escherichia coli in mice. J Food Prot 75:1796–1805. https://doi.org/10.4315/0362-028X.JFP-11-508

    Article  CAS  PubMed  Google Scholar 

  44. Bakowski MA, Cirulis JT, Brown NF, Finlay BB, Brumell JH (2007) SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cell Microbiol 9:2839–2855. https://doi.org/10.1111/j.1462-5822.2007.01000.x

    Article  CAS  PubMed  Google Scholar 

  45. Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT, Lawhon S, Khare S, Adams LG, Baumler AJ (2005) SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun 73:146–154. https://doi.org/10.1128/IAI.73.1.146-154.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Surette MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella Typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A 96:1639–1644. https://doi.org/10.1073/pnas.96.4.1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. DeLisa MP, Wu CF, Wang L et al (2001) DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol 183:5239–5247. https://doi.org/10.1128/JB.183.18.5239-5247.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB (1999) Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 96:15196–15201. https://doi.org/10.1073/pnas.96.26.15196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Medellin-Peña MJ, Wang H, Johnson R et al (2007) Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl Environ Microbiol 73:4259–4267. https://doi.org/10.1128/AEM.00159-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang M, Jiao X-D, Hu Y-H, Sun L (2009) Attenuation of Edwardsiella tarda virulence by small peptides that interfere with LuxS/autoinducer type 2 quorum sensing. Appl Environ Microbiol 75:3882–3890. https://doi.org/10.1128/AEM.02690-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bayoumi MA, Griffiths MW (2010) Probiotics down-regulate genes in Salmonella enterica serovar Typhimurium pathogenicity islands 1 and 2. J Food Prot 73:452–460

    Article  PubMed  Google Scholar 

  52. Yun B, Oh S, Griffiths MW (2014) Lactobacillus acidophilus modulates the virulence of Clostridium difficile. J Dairy Sci 97:4745–4758. https://doi.org/10.3168/jds.2014-7921

    Article  CAS  PubMed  Google Scholar 

  53. Mundi A, Delcenserie V, Amiri-Jami M et al (2013) Cell-free preparations of Lactobacillus acidophilus strain La-5 and Bifidobacterium longum strain NCC2705 affect virulence gene expression in Campylobacter jejuni. J Food Prot 76:1740–1746. https://doi.org/10.4315/0362-028X.JFP-13-084

    Article  CAS  PubMed  Google Scholar 

  54. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, Looijer-van Langen M, Madsen KL (2008) Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 295:G1025–G1034. https://doi.org/10.1152/ajpgi.90227.2008

    Article  CAS  PubMed  Google Scholar 

  55. De Marco S, Sichetti M, Muradyan D et al (2018) Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and microphages stimulated with LPS. Evid Based Complement Alternat Med 2018:1736308

  56. Chen YP, Hsiao PJ, Hong WS, Dai TY, Chen MJ (2012) Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J Dairy Sci 95:63–74. https://doi.org/10.3168/jds.2011-4696

    Article  CAS  PubMed  Google Scholar 

  57. Sherman PM, Johnson-Henry KC, Yeung HP, Ngo PSC, Goulet J, Tompkins TA (2005) Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 73:5183–5188. https://doi.org/10.1128/IAI.73.8.5183-5188.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bahrami B, Macfarlane S, Macfarlane GT (2011) Induction of cytokine formation by human intestinal bacteria in gut epithelial cell lines. J Appl Microbiol 110:353–363. https://doi.org/10.1111/j.1365-2672.2010.04889.x

    Article  CAS  PubMed  Google Scholar 

  59. Haller D, Bode C, Hammes WP et al (2000) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47:79–87. https://doi.org/10.1136/gut.47.1.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Imaoka A, Shima T, Kato K, Mizuno S, Uehara T, Matsumoto S, Setoyama H, Hara T, Umesaki Y (2008) Anti-inflammatory activity of probiotic Bifidobacterium: enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol 14:2511–2516. https://doi.org/10.3748/wjg.14.2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eckmann L, Jung HC, Schürer-Maly C, Panja A, Morzycka-Wroblewska E, Kagnoff MF (1993) Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterol 105:1689–1697. https://doi.org/10.1016/0016-5085(93)91064-O

    Article  CAS  Google Scholar 

  62. Wagar LE, Champagne CP, Buckley ND, Raymond Y, Green-Johnson JM (2009) Immunomodulatory properties of fermented soy and dairy milks prepared with lactic acid bacteria. J Food Sci 74:M423–M430. https://doi.org/10.1111/j.1750-3841.2009.01308.x

    Article  CAS  PubMed  Google Scholar 

  63. Jackson GDF, Dai Y, Sewell WA (2000) Bile mediates intestinal pathology in endotoxemia in rats. Infect Immun 68:4714–4719. https://doi.org/10.1128/IAI.68.8.4714-4719.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Williams JM, Duckworth CA, Burkitt MD, Watson AJM, Campbell BJ, Pritchard DM (2014) Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol 52:445–455. https://doi.org/10.1177/0300985814559404

    Article  CAS  PubMed  Google Scholar 

  65. Ernst RK, Dombroski DM, Merrick JM (1990) Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of HEp-2 cells by Salmonella Typhimurium. Infect Immun 58:2014–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada/Dairy Farmers of Ontario Industrial Research Chair in Dairy Microbiology held by G. LaPointe.

Funding

This study was funded by the Natural Sciences and Engineering Research Council of Canada/Dairy Farmers of Ontario Industrial Research Chair in Dairy Microbiology (#505387-15) awarded to G. LaPointe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisèle LaPointe.

Ethics declarations

Conflict of Interest

AH is employed by the company Daisy Brand, Dallas, TX, USA. All other authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.S., Corredig, M., Morales-Rayas, R. et al. Downregulation of Salmonella Virulence Gene Expression During Invasion of Epithelial Cells Treated with Lactococcus lactis subsp. cremoris JFR1 Requires OppA. Probiotics & Antimicro. Prot. 12, 577–588 (2020). https://doi.org/10.1007/s12602-019-09574-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09574-1

Keywords

Navigation