Advertisement

Administration of the Probiotic Escherichia coli Strain A0 34/86 Resulted in a Stable Colonization of the Human Intestine During the First Year of Life

  • Lenka Micenková
  • Juraj Bosák
  • Stanislav Smatana
  • Adam Novotný
  • Eva Budinská
  • David ŠmajsEmail author
Article

Abstract

Colinfant New Born (CNB) is an orally administered probiotic preparation containing the Escherichia coli strain A0 34/86, which is specially marketed for use in newborns and infants. Although the impact of different probiotics on the composition of the human gut microbiota has been previously described, the effects of E. coli probiotic consumption during infancy on the development of intestinal microbiota are not known. The effect of oral administration of CNB on the Enterobacteriaceae population was mapped using 16S rRNA gene sequencing in DNA samples isolated from the stools of one infant collected at 177 different time points during the first year of life. E. coli strains turnover was analyzed based on the detection of 26 genetic determinants, phylogroups, and pulsed-field gel electrophoresis (PFGE) analysis. Administration of CNB during the second and third month of life introduced the Escherichia genus to the infant’s intestinal tract, and Escherichia became dominant among the Enterobacteriaceae family (p < 0.01). Genetic determinants, typical for probiotic E. coli A0 34/86 strain, were detected on the first day after application of CNB and persisted all year. In addition, nine transient E. coli strains were identified; these strains harbored different genetic determinants and showed different PFGE profiles. Transient strains were detected from 2 to 24 days in the stool samples. The first Escherichia colonizer originated from the application of the CNB probiotic preparation. Probiotic E. coli A0 34/86 successfully colonized the intestinal tract of an infant and became resident during the first year of life.

Keywords

E. coli Enterobacteriaceae Probiotic Colinfant Sequencing 

Notes

Acknowledgment

We thank Thomas Secrest (Secrest Editing, Ltd.) for his assistance with the English revision of the manuscript.

Funding information

This study was funded by the Ministry of Education, Youth, and Sports of the Czech Republic; the European Structural and Investment Funds (CETOCOEN PLUS project: CZ.02.1.01/0.0/0.0/15_003/0000469; the RECETOX research infrastructure: LM2015051 and CZ.02.1.01/0.0/0.0/16_013/0001761); the Ministry of Health, the Czech Republic (FNBr, 65269705); and by the Grant Agency of the Czech Republic (project No. 17-24592Y). Computational resources were supplied by the Ministry of Education, Youth, and Sports of the Czech Republic under the Projects CESNET (Project No. LM2015042) and CERIT-Scientific Cloud (Project No. LM2015085) provided within the Projects Large Research, Development, and Innovations Infrastructures. Additional funding to SS was provided by the Advanced parallel project and embedded computer systems, Brno University of Technology (FIT-S-17-3994). This work was partly supported by the GAMU grant (MUNI/M/1322/2015) and the GACR grant (GA16-21649S) to DŠ.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12602_2019_9548_MOESM1_ESM.xlsx (34 kb)
ESM 1 (XLSX 34 kb)
12602_2019_9548_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 19 kb)
12602_2019_9548_MOESM3_ESM.xlsx (16 kb)
ESM 3 (XLSX 15 kb)
12602_2019_9548_MOESM4_ESM.xlsx (30 kb)
ESM 4 (XLSX 3f0 kb)

References

  1. 1.
    Nowrouzian F, Hesselmar B, Saalman R, Strannegard IL, Aberg N, Wold AE, Adlerberth I (2003) Escherichia coli in infants' intestinal microflora: colonization rate, strain turnover, and virulence gene carriage. Pediatr Res 54:8–14CrossRefGoogle Scholar
  2. 2.
    Mukhopadhya I, Hansen R, El-Omar EM, Hold GL (2012) IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 9:219–230CrossRefGoogle Scholar
  3. 3.
    Alsalah D, Al-Jassim N, Timraz K, Hong PY (2015) Assessing the groundwater quality at a Saudi Arabian agricultural site and the occurrence of opportunistic pathogens on irrigated food produce. Int J Environ Res Public Health 12:12391–12411CrossRefGoogle Scholar
  4. 4.
    Kuang YS, Li SH, Guo Y, Lu JH, He JR, Luo BJ, Jiang FJ, Shen H, Papasian CJ, Pang H, Xia HM, Deng HW, Qiu X (2016) Composition of gut microbiota in infants in China and global comparison. Sci Rep 6:36666CrossRefGoogle Scholar
  5. 5.
    de Muinck EJ, Oien T, Storrø O, Johnsen R, Stenseth NC, Rønningen KS, Rudi K (2011) Diversity, transmission and persistence of Escherichia coli in a cohort of mothers and their infants. Environ Microbiol Rep 3:352–359CrossRefGoogle Scholar
  6. 6.
    Rudi K, Storro O, Oien T, Johnsen R (2012) Modelling bacterial transmission in human allergen-specific IgE sensitization. Lett Appl Microbiol 54:447–454CrossRefGoogle Scholar
  7. 7.
    Russo TA, Johnson JR (2000) Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis 181:1753–1754CrossRefGoogle Scholar
  8. 8.
    Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, Giske CG, Naas T, Carattoli A, Martínez-Medina M, Bosch J, Retamar P, Rodríguez-Baño J, Baquero F, Soto SM (2016) Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev 40:437–463CrossRefGoogle Scholar
  9. 9.
    Versalovic J (2013) The human microbiome and probiotics: implications for pediatrics. Ann Nutr Metab 2:42–52CrossRefGoogle Scholar
  10. 10.
    Wassenaar TM (2016) Insights from 100 years of research with probiotic E. coli. Eur J Microbiol Immunol (Bp) 6:147–161CrossRefGoogle Scholar
  11. 11.
    Lodinová-Zadniková R, Tlaskalova H, Bartakova Z (1991) The antibody response in infants after colonisation of the intestine with E. coli 083. Artificial colonisation used as prevention against nosocomial infections. Adv Exp Med Biol 310:329–333CrossRefGoogle Scholar
  12. 12.
    Lodinová-Zádníková R, Cukrowska B, Tlaskalova-Hogenova H (2003) Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 years). Int Arch Allergy Immunol 131:209–211CrossRefGoogle Scholar
  13. 13.
    Hejnova J, Dobrindt U, Nemcova R, Rusniok C, Bomba A, Frangeul L, Hacker J, Glaser P, Sebo P, Buchrieser C (2005) Characterization of the flexible genome complement of the commensal Escherichia coli strain A0 34/86 (O83 : K24 : H31). Microbiology 151:385–398CrossRefGoogle Scholar
  14. 14.
    Apperloo-Renkema HZ, van der Waaij D (1991) Study of colonization resistance for Enterobacteriaceae in man by experimental contamination and biotyping as well as the possible role of antibodies in the clearance of these bacteria from the intestines. Epidemiol Infect 107:619–626CrossRefGoogle Scholar
  15. 15.
    Souza V, Castillo A, Eguiarte LE (2002) The evolutionary ecology of Escherichia coli. Am Sci 90:332–341CrossRefGoogle Scholar
  16. 16.
    Lasaro M, Liu Z, Bishar R, Kelly K, Chattopadhyay S, Paul S, Sokurenko E, Zhu J, Goulian M (2014) Escherichia coli isolate for studying colonization of the mouse intestine and its application to two-component signaling knockouts. J Bacteriol 196:1723–1732CrossRefGoogle Scholar
  17. 17.
    Hentges DJ, Que JU, Casey SW (1985) The influence of streptomycin on the ecology of the intestine and resistance to infection. In: Adam D, Hahn H, Opferkuch W (eds) The influence of antibiotics on the host-parasite relationship II. Springer, BerlinGoogle Scholar
  18. 18.
    Hudault S, Guignot J, Servin AL (2001) Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut 49:47–55CrossRefGoogle Scholar
  19. 19.
    Derrien M, van Hylckama Vlieg JE (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23:354–366CrossRefGoogle Scholar
  20. 20.
    Šmajs D, Micenková L, Šmarda J, Vrba M, Sevčíková A, Vališová Z, Woznicová V (2010) Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol 10:288CrossRefGoogle Scholar
  21. 21.
    Micenková L, Štaudová B, Bosák J, Mikalová L, Littnerová S, Vrba M, Ševčíková A, Woznicová V, Šmajs D (2014) Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol 14:109CrossRefGoogle Scholar
  22. 22.
    Micenková L, Beňová A, Frankovičová L, Bosák J, Vrba M, Ševčíková A, Kmeťová M, Šmajs D (2017) Human Escherichia coli isolates from hemocultures: septicemia linked to urogenital tract infections is caused by isolates harboring more virulence genes than bacteraemia linked to other conditions. Int J Med Microbiol 307:182–189CrossRefGoogle Scholar
  23. 23.
    Micenková L, Bosák J, Vrba M, Ševčíková A, Šmajs D (2016) Human extraintestinal pathogenic Escherichia coli strains differ in prevalence of virulence factors, phylogroups, and bacteriocin determinants. BMC Microbiol 16:218CrossRefGoogle Scholar
  24. 24.
    Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O (1995) Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol 12:85–90CrossRefGoogle Scholar
  25. 25.
    Bírošová E, Siegfried L, Kmeťová M, Makara A, Ostró A, Gresová A, Urdzík P, Liptáková A, Molokácová M, Bártl R, Valanský L (2004) Detection of virulence factors in alpha-haemolytic Escherichia coli strains isolated from various clinical materials. Clin Microbiol Infect 10:569–573CrossRefGoogle Scholar
  26. 26.
    Gómez-Moreno R, Robledo IE, Baerga-Ortiz A (2014) Direct detection and quantification of bacterial genes associated with inflammation in DNA isolated from stool. Adv Microbiol 4:1065–1075CrossRefGoogle Scholar
  27. 27.
    Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764CrossRefGoogle Scholar
  28. 28.
    Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558CrossRefGoogle Scholar
  29. 29.
    Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239Google Scholar
  30. 30.
    Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217CrossRefGoogle Scholar
  31. 31.
    Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Kozyrskyj AL, CHILD Study Investigators (2013) Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Can Med Assoc J 185:385–394CrossRefGoogle Scholar
  32. 32.
    Taddei CR, Oliveira FF, Duarte RT, Talarico ST, Takagi EH, Ramos Carvalho II, Gomes FM, Brandt K, Martinez MB (2014) High abundance of Escherichia during the establishment of fecal microbiota in Brazilian children. Microb Ecol 67:624–634CrossRefGoogle Scholar
  33. 33.
    Adlerberth I, Carlsson B, de Man P, Jalil F, Khan SR, Larsson P, Mellander L, Svanborg C, Wold AE, Hanson LA (1991) Intestinal colonization with Enterobacteriaceae in Pakistani and Swedish hospital-delivered infants. Acta Paediatr Scand 80:602–610CrossRefGoogle Scholar
  34. 34.
    Zollner-Schwetz I, Högenauer C, Joainig M, Weberhofer P, Gorkiewicz G, Valentin T, Hinterleitner TA, Krause R (2008) Role of Klebsiella oxytoca in antibiotic-associated diarrhea. Clin Infect Dis 47:e74–e78CrossRefGoogle Scholar
  35. 35.
    Quin C, Estaki M, Vollman DM, Barnett JA, Gill SK, Gibson DL (2018) Probiotic supplementation and associated infant gut microbiome and health: a cautionary retrospective clinical comparison. Sci Rep 29:8283CrossRefGoogle Scholar
  36. 36.
    Adlerberth I, Jalil F, Carlsson B, Mellander L, Hanson LA, Larsson P, Khalil K, Wold AE (1998) High turnover rate of Escherichia coli strains in the intestinal flora of infants in Pakistan. Epidemiol Infect 121:587–598CrossRefGoogle Scholar
  37. 37.
    Conway T, Cohen PS (2015) Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr 3Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lenka Micenková
    • 1
  • Juraj Bosák
    • 2
  • Stanislav Smatana
    • 1
  • Adam Novotný
    • 1
  • Eva Budinská
    • 1
  • David Šmajs
    • 2
    Email author
  1. 1.Research Centre for Toxic Compounds in the Environment, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Biology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic

Personalised recommendations