Metal Binding Antimicrobial Peptides in Nanoparticle Bio-functionalization: New Heights in Drug Delivery and Therapy

  • Hichem MoulahoumEmail author
  • Faezeh Ghorbani Zamani
  • Suna Timur
  • Figen ZihniogluEmail author


Peptides are considered very important due to the diversity expressed through their amino acid sequence, structure variation, large spectrum, and their essential role in biological systems. Antimicrobial peptides (AMPs) emerged as a potent tool in therapy owing to their antimicrobial properties but also their ability to trespass the membranes, specificity, and low toxicity. They comprise a variety of peptides from which specific amino acid-rich peptides are of interest to the current review due to their features in metal interaction and cell penetration. Histidine-rich peptides such as Histatins belong to the metal binding salivary residing peptides with efficient antibacterial, antifungal, and wound-healing activities. Furthermore, their ability to activate in acidic environment attracted the attention to their potential in therapy. The current review covers the current knowledge about AMPs and critically assess the potential of associating with metal ions both structurally and functionally. This review provides interesting hints for the advantages provided by AMPs and metal ions in biomedicine, making use of their direct properties in brain diseases therapy or in the creation of new bio-functionalized nanoparticles for cancer diagnosis and treatment.


Antimicrobial peptides Metal ions Histidine-rich peptides Histatins Bio-functionalized nanoparticles Brain diseases 




Alzheimer’s disease


Antimicrobial database


Antimicrobial peptides


Amyloid precursor protein


Bio-functionalized nanoparticles


Cell-penetrating peptides




Drug-delivery systems


Functionalized NPs

his1 (or htn1)

Histatin gene 1

his2 (or htn2)

Histatin gene 2




Metal-peptide attenuating compounds


Nickel-superoxide dismutase








Specific amino acid-rich peptides


Traumatic brain injury


Random amino acid


Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interest.


  1. 1.
    Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215. CrossRefPubMedGoogle Scholar
  2. 2.
    Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. CrossRefPubMedGoogle Scholar
  3. 3.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. CrossRefPubMedGoogle Scholar
  4. 4.
    Wang G (2010) Antimicrobial peptides: discovery, design and novel therapeutic strategies. CABI.
  5. 5.
    Menousek J, Mishra B, Hanke ML, Heim CE, Kielian T, Wang G (2012) Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Int J Antimicrob Agents 39:402–406. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093. CrossRefPubMedGoogle Scholar
  7. 7.
    Wang G, Li X, Wang Z (2019) The antimicrobial peptide database (APD). Dept of Pathology & Microbiology, UNMC, Omaha Accessed 03 March 2019Google Scholar
  8. 8.
    Gogoladze G, Grigolava M, Vishnepolsky B, Chubinidze M, Duroux P, Lefranc MP, Pirtskhalava M (2014) DBAASP: database of antimicrobial activity and structure of peptides. FEMS Microbiol Lett 357:63–68. CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao X, Wu H, Lu H, Li G, Huang Q (2013) LAMP: a database linking antimicrobial peptides. PLoS One 8:e66557. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yang X, Lee WH, Zhang Y (2012) Extremely abundant antimicrobial peptides existed in the skins of nine kinds of chinese odorous frogs. J Proteome Res 11:306–319. CrossRefPubMedGoogle Scholar
  11. 11.
    Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Łoboda D, Kozłowski H, Rowińska-Żyrek M (2018) Antimicrobial peptide–metal ion interactions–a potential way of activity enhancement. New J Chem 42:7560–7568. CrossRefGoogle Scholar
  13. 13.
    Conde R, Arguello M, Izquierdo J, Noguez R, Moreno M, Lanz H (2012) Natural antimicrobial peptides from eukaryotic organisms. In: Antimicrobial agents. Varaprasad Bobbarala, IntechOpen, Arizona, pp 51–72. CrossRefGoogle Scholar
  14. 14.
    Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344CrossRefPubMedGoogle Scholar
  15. 15.
    Dudev T, Lim C (2008) Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu Rev Biophys 37:97–116. CrossRefPubMedGoogle Scholar
  16. 16.
    Harding MM, Nowicki MW, Walkinshaw MD (2010) Metals in protein structures: a review of their principal features. Crystallogr Rev 16:247–302. CrossRefGoogle Scholar
  17. 17.
    Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314. CrossRefPubMedGoogle Scholar
  18. 18.
    Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Springer, Netherlands. CrossRefGoogle Scholar
  19. 19.
    Kulon K, Valensin D, Kamysz W, Valensin G, Nadolski P, Porciatti E, Gaggelli E, Kozłowski H (2008) The His-His sequence of the antimicrobial peptide demegen P-113 makes it very attractive ligand for Cu2+. J Inorg Biochem 102:960–972. CrossRefPubMedGoogle Scholar
  20. 20.
    Mishra B, Wang G (2012) The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Front Immunol 3:221. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937. CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:D590–D592. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang G, Watson KM, Peterkofsky A, Buckheit RW Jr (2010) Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database. Antimicrob Agents Chemother 54:1343–1346. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Miteva M, Andersson M, Karshikoff A, Otting G (1999) Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett 462:155–158. CrossRefPubMedGoogle Scholar
  25. 25.
    Pokorny A, Almeida PF (2004) Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry 43:8846–8857. CrossRefPubMedGoogle Scholar
  26. 26.
    Pokorny A, Almeida PF (2005) Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Biochemistry 44:9538–9544. CrossRefPubMedGoogle Scholar
  27. 27.
    Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202. CrossRefPubMedGoogle Scholar
  28. 28.
    Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. CrossRefPubMedGoogle Scholar
  30. 30.
    Xing G, DeRose VJ (2001) Designing metal–peptide models for protein structure and function. Curr Opin Chem Biol 5:196–200. CrossRefPubMedGoogle Scholar
  31. 31.
    Licini G, Scrimin P (2003) Metal-ion-binding peptides: from catalysis to protein tagging. Angew Chem Int Ed Engl 42:4572–4575. CrossRefPubMedGoogle Scholar
  32. 32.
    Turk BE, Cantley LC (2003) Peptide libraries: at the crossroads of proteomics and bioinformatics. Curr Opin Chem Biol 7:84–90. CrossRefPubMedGoogle Scholar
  33. 33.
    Berkessel A, Hérault DA (1999) Discovery of peptide-zirconium complexes that mediate phosphate hydrolysis by batch screening of a combinatorial undecapeptide library. Angew Chem Int Ed 38:102–105.<102::aid-anie102>;2-h CrossRefGoogle Scholar
  34. 34.
    Huang X, Pieczko ME, Long EC (1999) Combinatorial optimization of the DNA cleaving Ni(II) x Xaa-Xaa-His metallotripeptide domain. Biochemistry 38:2160–2166. CrossRefPubMedGoogle Scholar
  35. 35.
    Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Nickel superoxide dismutase structure and mechanism. Biochemistry 43:8038–8047. CrossRefPubMedGoogle Scholar
  36. 36.
    Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Djinovic Carugo K (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci U S A 101:8569–8574. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Garcia J, Gerber SH, Sugita S, Sudhof TC, Rizo J (2004) A conformational switch in the piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 11:45–53. CrossRefPubMedGoogle Scholar
  38. 38.
    Barondeau DP, Getzoff ED (2004) Structural insights into protein-metal ion partnerships. Curr Opin Struct Biol 14:765–774. CrossRefPubMedGoogle Scholar
  39. 39.
    Chimento DP, Mohanty AK, Kadner RJ, Wiener MC (2003) Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat Struct Biol 10:394–401. CrossRefPubMedGoogle Scholar
  40. 40.
    Adams TE, Hockin MF, Mann KG, Everse SJ (2004) The crystal structure of activated protein C-inactivated bovine factor Va: implications for cofactor function. Proc Natl Acad Sci U S A 101:8918–8923. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wilson JJ, Matsushita O, Okabe A, Sakon J (2003) A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation. EMBO J 22:1743–1752. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Conklin SE, Bridgman EC, Su Q, Riggs-Gelasco P, Haas KL, Franz KJ (2017) Specific histidine residues confer histatin peptides with copper-dependent activity against Candida albicans. Biochemistry 56:4244–4255. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    de Sousa-Pereira P, Amado F, Abrantes J, Ferreira R, Esteves PJ, Vitorino R (2013) An evolutionary perspective of mammal salivary peptide families: cystatins, histatins, statherin and PRPs. Arch Oral Biol 58:451–458. CrossRefPubMedGoogle Scholar
  44. 44.
    Imamura Y, Fujigaki Y, Oomori Y, Ouryouji K, Yanagisawa S, Miyazawa H, Wang PL (2009) Transcriptional regulation of the salivary histatin gene: finding of a strong positive regulatory element and its binding protein. J Biochem 145:279–288. CrossRefPubMedGoogle Scholar
  45. 45.
    Troxler RF, Offner GD, Xu T, Vanderspek JC, Oppenheim FG (1990) Structural relationship between human salivary histatins. J Dent Res 69:2–6. CrossRefPubMedGoogle Scholar
  46. 46.
    Sun X, Salih E, Oppenheim FG, Helmerhorst EJ (2009) Kinetics of histatin proteolysis in whole saliva and the effect on bioactive domains with metal-binding, antifungal, and wound-healing properties. FASEB J 23:2691–2701. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Khurshid Z, Najeeb S, Mali M, Moin SF, Raza SQ, Zohaib S, Sefat F, Zafar MS (2017) Histatin peptides: pharmacological functions and their applications in dentistry. Saudi Pharm J 25:25–31. CrossRefPubMedGoogle Scholar
  48. 48.
    Melino S, Rufini S, Sette M, Morero R, Grottesi A, Paci M, Petruzzelli R (1999) Zn(2+) ions selectively induce antimicrobial salivary peptide histatin-5 to fuse negatively charged vesicles. Identification and characterization of a zinc-binding motif present in the functional domain. Biochemistry 38:9626–9633. CrossRefPubMedGoogle Scholar
  49. 49.
    Grogan J, McKnight CJ, Troxler RF, Oppenheim FG (2001) Zinc and copper bind to unique sites of histatin 5. FEBS Lett 491:76–80. CrossRefPubMedGoogle Scholar
  50. 50.
    Puri S, Edgerton M (2014) How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot Cell 13:958–964. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1:440–464. CrossRefPubMedGoogle Scholar
  52. 52.
    Helmerhorst EJ, Breeuwer P, van ‘t Hof W, Walgreen-Weterings E, Oomen LCJM, Veerman ECI, Amerongen AVN, Abee T (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274:7286–7291. CrossRefPubMedGoogle Scholar
  53. 53.
    Li XS, Reddy MS, Baev D, Edgerton M (2003) Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278:28553–28561. CrossRefPubMedGoogle Scholar
  54. 54.
    Helmerhorst EJ, Troxler RF, Oppenheim FG (2001) The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A 98:14637–14642. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sankararamakrishnan R, Verma S, Kumar S (2005) ATCUN-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis. Proteins 58:211–221. CrossRefPubMedGoogle Scholar
  56. 56.
    Harford C, Sarkar B (1997) Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc Chem Res 30:123–130. CrossRefGoogle Scholar
  57. 57.
    Alies B, Badei B, Faller P, Hureau C (2012) Reevaluation of copper(I) affinity for amyloid-beta peptides by competition with ferrozine–an unusual copper(I) indicator. Chemistry (Easton) 18:1161–1167. CrossRefGoogle Scholar
  58. 58.
    Gusman H, Lendenmann U, Grogan J, Troxler RF, Oppenheim FG (2001) Is salivary histatin 5 a metallopeptide? Biochim Biophys Acta Protein Struct Mol Enzymol 1545:86–95. CrossRefGoogle Scholar
  59. 59.
    Puri S, Li R, Ruszaj D, Tati S, Edgerton M (2015) Iron binding modulates candidacidal properties of salivary histatin 5. J Dent Res 94:201–208. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kurowska E, Bonna A, Goch G, Bal W (2011) Salivary histatin-5, a physiologically relevant ligand for Ni(II) ions. J Inorg Biochem 105:1220–1225. CrossRefPubMedGoogle Scholar
  61. 61.
    Melino S, Santone C, Di Nardo P, Sarkar B (2014) Histatins: salivary peptides with copper(II)- and zinc(II)-binding motifs: perspectives for biomedical applications. FEBS J 281:657–672. CrossRefPubMedGoogle Scholar
  62. 62.
    Melino S, Gallo M, Trotta E, Mondello F, Paci M, Petruzzelli R (2006) Metal-binding and nuclease activity of an antimicrobial peptide analogue of the salivary histatin 5. Biochemistry 45:15373–15383. CrossRefPubMedGoogle Scholar
  63. 63.
    Tay WM, Hanafy AI, Angerhofer A, Ming LJ (2009) A plausible role of salivary copper in antimicrobial activity of histatin-5–metal binding and oxidative activity of its copper complex. Bioorg Med Chem Lett 19:6709–6712. CrossRefPubMedGoogle Scholar
  64. 64.
    Porciatti E, Milenkovic M, Gaggelli E, Valensin G, Kozlowski H, Kamysz W, Valensin D (2010) Structural characterization and antimicrobial activity of the Zn(II) complex with P113 (demegen), a derivative of histatin 5. Inorg Chem 49:8690–8698. CrossRefPubMedGoogle Scholar
  65. 65.
    Cobine PA, Ojeda LD, Rigby KM, Winge DR (2004) Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem 279:14447–14455. CrossRefPubMedGoogle Scholar
  66. 66.
    Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107. CrossRefPubMedGoogle Scholar
  67. 67.
    Monje M, Dietrich J (2012) Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav Brain Res 227:376–379. CrossRefPubMedGoogle Scholar
  68. 68.
    Monsuez JJ, Charniot JC, Vignat N, Artigou JY (2010) Cardiac side-effects of cancer chemotherapy. Int J Cardiol 144:3–15. CrossRefPubMedGoogle Scholar
  69. 69.
    Dinca A, Chien WM, Chin MT (2016) Intracellular delivery of proteins with cell-penetrating peptides for therapeutic uses in human disease. Int J Mol Sci 17:263. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Helmfors H, Eriksson J, Langel U (2015) Optimized luciferase assay for cell-penetrating peptide-mediated delivery of short oligonucleotides. Anal Biochem 484:136–142. CrossRefPubMedGoogle Scholar
  71. 71.
    Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, He H, Liang Y, Yang VC (2013) Curb challenges of the “Trojan horse” approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 65:1299–1315. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kato T, Yamashita H, Misawa T, Nishida K, Kurihara M, Tanaka M, Demizu Y, Oba M (2016) Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorg Med Chem 24:2681–2687. CrossRefPubMedGoogle Scholar
  73. 73.
    Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61:953–964. CrossRefPubMedGoogle Scholar
  74. 74.
    Vives E, Schmidt J, Pelegrin A (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 1786:126–138. CrossRefPubMedGoogle Scholar
  75. 75.
    Davoudi Z, Akbarzadeh A, Rahmatiyamchi M, Movassaghpour AA, Alipour M, Nejati-Koshki K, Sadeghi Z, Dariushnejad H, Zarghami N (2014) Molecular target therapy of AKT and NF-kB signaling pathways and multidrug resistance by specific cell penetrating inhibitor peptides in HL-60 cells. Asian Pac J Cancer Prev 15:4353–4358. CrossRefPubMedGoogle Scholar
  76. 76.
    Vargas JR, Stanzl EG, Teng NN, Wender PA (2014) Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance. Mol Pharm 11:2553–2565. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA (2008) Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci U S A 105:12128–12133. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lindgren M, Rosenthal-Aizman K, Saar K, Eiríksdóttir E, Jiang Y, Sassian M, Östlund P, Hällbrink M, Langel Ü (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71:416–425. CrossRefPubMedGoogle Scholar
  79. 79.
    Fei L, Yap LP, Conti PS, Shen WC, Zaro JL (2014) Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide. Biomaterials 35:4082–4087. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Jiang T, Zhang Z, Zhang Y, Lv H, Zhou J, Li C, Hou L, Zhang Q (2012) Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials 33:9246–9258. CrossRefPubMedGoogle Scholar
  81. 81.
    Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132:164–170. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Shi K, Li J, Cao Z, Yang P, Qiu Y, Yang B, Wang Y, Long Y, Liu Y, Zhang Q, Qian J, Zhang Z, Gao H, He Q (2015) A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin alphavbeta3 for the treatment of melanoma. J Control Release 217:138–150. CrossRefPubMedGoogle Scholar
  83. 83.
    Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795. CrossRefPubMedGoogle Scholar
  84. 84.
    Jahde E, Rajewsky MF, Baumgartl H (1982) pH distributions in transplanted neural tumors and normal tissues of BDIX rats as measured with pH microelectrodes. Cancer Res 42:1498–1504PubMedGoogle Scholar
  85. 85.
    Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384PubMedGoogle Scholar
  86. 86.
    Liang J, Wu WL, Xu XD, Zhuo RX, Zhang XZ (2014) pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Colloids Surf B: Biointerfaces 114:398–403. CrossRefPubMedGoogle Scholar
  87. 87.
    Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT (2007) Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans 35:784–787. CrossRefPubMedGoogle Scholar
  88. 88.
    Guo Z, Peng H, Kang J, Sun D (2016) Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomedical reports 4:528–534. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ziegler A (2008) Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 60:580–597. CrossRefPubMedGoogle Scholar
  90. 90.
    Zaro JL, Fei L, Shen WC (2012) Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. J Control Release 158:357–361. CrossRefPubMedGoogle Scholar
  91. 91.
    Zhang W, Song J, Zhang B, Liu L, Wang K, Wang R (2011) Design of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells. Bioconjug Chem 22:1410–1415. CrossRefPubMedGoogle Scholar
  92. 92.
    Yao J, Ma Y, Zhang W, Li L, Zhang Y, Zhang L, Liu H, Ni J, Wang R (2017) Design of new acid-activated cell-penetrating peptides for tumor drug delivery. PeerJ 5:e3429. CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241. CrossRefGoogle Scholar
  94. 94.
    Jiang Z, Le NDB, Gupta A, Rotello VM (2015) Cell surface-based sensing with metallic nanoparticles. Chem Soc Rev 44:4264–4274. CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Morales-Avila E, Ferro-Flores G, Ocampo-García BE, López-Téllez G, López-Ortega J, Rogel-Ayala DG, Sánchez-Padilla D (2017) Antibacterial efficacy of gold and silver nanoparticles functionalized with the ubiquicidin (29–41) antimicrobial peptide. J Nanomater 2017:1–10. CrossRefGoogle Scholar
  96. 96.
    Rajchakit U, Sarojini V (2017) Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug Chem 28:2673–2686. CrossRefPubMedGoogle Scholar
  97. 97.
    Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 60:569–578. CrossRefPubMedGoogle Scholar
  98. 98.
    Sousa MH, Rubim JC, Sobrinho PG, Tourinho FA (2001) Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J Magn Magn Mater 225:67–72. CrossRefGoogle Scholar
  99. 99.
    Tie SL, Lin YQ, Lee HC, Bae YS, Lee CH (2006) Amino acid-coated nano-sized magnetite particles prepared by two-step transformation. Colloids Surf A Physicochem Eng Asp 273:75–83. CrossRefGoogle Scholar
  100. 100.
    Viota JL, Arroyo FJ, Delgado AV, Horno J (2010) Electrokinetic characterization of magnetite nanoparticles functionalized with amino acids. J Colloid Interface Sci 344:144–149. CrossRefPubMedGoogle Scholar
  101. 101.
    Wampler HP, Ivanisevic A (2009) Nanoindentation of gold nanoparticles functionalized with proteins. Micron 40:444–448. CrossRefPubMedGoogle Scholar
  102. 102.
    Koh I, Wang X, Varughese B, Isaacs L, Ehrman SH, English DS (2006) Magnetic iron oxide nanoparticles for biorecognition: evaluation of surface coverage and activity. J Phys Chem B 110:1553–1558. CrossRefPubMedGoogle Scholar
  103. 103.
    Chen W, Shen HB, Li XY, Jia NQ, Xu JM (2006) Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of CD34(+) hematopoietic stem cells. Appl Surf Sci 253:1762–1769. CrossRefGoogle Scholar
  104. 104.
    von Zur MC et al (2007) Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis 193:102–111. CrossRefGoogle Scholar
  105. 105.
    Li L, Wartchow CA, Danthi SN, Shen Z, Dechene N, Pease J, Choi HS, Doede T, Chu P, Ning S, Lee DY, Bednarski MD, Knox SJ (2004) A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys 58:1215–1227. CrossRefPubMedGoogle Scholar
  106. 106.
    Dharap SS, Qiu B, Williams GC, Sinko P, Stein S, Minko T (2003) Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J Control Release 91:61–73. CrossRefPubMedGoogle Scholar
  107. 107.
    Missailidis S, Thomaidou D, Borbas KE, Price MR (2005) Selection of aptamers with high affinity and high specificity against C595, an anti-MUC1 IgG3 monoclonal antibody, for antibody targeting. J Immunol Methods 296:45–62. CrossRefPubMedGoogle Scholar
  108. 108.
    Mitra A, Mulholland J, Nan A, McNeill E, Ghandehari H, Line BR (2005) Targeting tumor angiogenic vasculature using polymer-RGD conjugates. J Control Release 102:191–201. CrossRefPubMedGoogle Scholar
  109. 109.
    Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94:1–18. CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Song SJ, Lee S, Ryu KS, Choi JS (2017) Amphiphilic peptide nanorods based on oligo-phenylalanine as a biocompatible drug carrier. Bioconjug Chem 28:2266–2276. CrossRefPubMedGoogle Scholar
  111. 111.
    de la Rica R, Matsui H (2010) Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev 39:3499–3509. CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F (2014) Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release 174:126–136. CrossRefPubMedGoogle Scholar
  113. 113.
    Chiu LS, Anderton RS, Knuckey NW, Meloni BP (2017) Peptide pharmacological approaches to treating traumatic brain injury: a case for arginine-rich peptides. Mol Neurobiol 54:7838–7857. CrossRefPubMedGoogle Scholar
  114. 114.
    Sundman MH, Hall EE, Chen NK (2014) Examining the relationship between head trauma and neurodegenerative disease: a review of epidemiology, pathology and neuroimaging techniques. J Alzheimers Dis Parkinsonism 4:137.
  115. 115.
    Lakatos A, Gyurcsik B, Nagy NV, Csendes Z, Weber E, Fulop L, Kiss T (2012) Histidine-rich branched peptides as Cu(II) and Zn(II) chelators with potential therapeutic application in Alzheimer’s disease. Dalton Trans 41:1713–1726. CrossRefPubMedGoogle Scholar
  116. 116.
    Lin CJ, Huang HC, Jiang ZF (2010) Cu(II) interaction with amyloid-beta peptide: a review of neuroactive mechanisms in AD brains. Brain Res Bull 82:235–242. CrossRefPubMedGoogle Scholar
  117. 117.
    Sarell CJ, Wilkinson SR, Viles JH (2010) Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-{beta} from Alzheimer disease. J Biol Chem 285:41533–41540. CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Nhan HS, Chiang K, Koo EH (2015) The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol 129:1–19. CrossRefPubMedGoogle Scholar
  119. 119.
    Goodman Y, Mattson MP (1994) Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 128:1–12. CrossRefPubMedGoogle Scholar
  120. 120.
    Corrigan F, Thornton E, Roisman LC, Leonard AV, Vink R, Blumbergs PC, van den Heuvel C, Cappai R (2014) The neuroprotective activity of the amyloid precursor protein against traumatic brain injury is mediated via the heparin binding site in residues 96-110. J Neurochem 128:196–204. CrossRefPubMedGoogle Scholar
  121. 121.
    Plummer SL, Corrigan F, Thornton E, Woenig JA, Vink R, Cappai R, Van Den Heuvel C (2018) The amyloid precursor protein derivative, APP96-110, is efficacious following intravenous administration after traumatic brain injury. PLoS One 13:e0190449. CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R (2016) The neuroprotective properties of the amyloid precursor protein following traumatic brain injury. Aging Dis 7:163–179. CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, Bush AI (1997) Zinc-induced Alzheimer’s Abeta1-40 aggregation is mediated by conformational factors. J Biol Chem 272:26464–26470CrossRefPubMedGoogle Scholar
  124. 124.
    Ginotra YP, Ramteke SN, Srikanth R, Kulkarni PP (2012) Mass spectral studies reveal the structure of Abeta1-16-Cu2+ complex resembling ATCUN motif. Inorg Chem 51:7960–7962. CrossRefPubMedGoogle Scholar
  125. 125.
    Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5:e9505. CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biochemistry Department, Faculty of ScienceEge UniversityBornovaTurkey

Personalised recommendations