Advertisement

Characterization of Probiotic Properties of Antifungal Lactobacillus Strains Isolated from Traditional Fermenting Green Olives

  • Houssam AbouloifaEmail author
  • Yahya Rokni
  • Reda Bellaouchi
  • Nabil Ghabbour
  • Salwa Karboune
  • Milena Brasca
  • Riadh Ben Salah
  • Nour Eddine Chihib
  • Ennouamane Saalaoui
  • Abdeslam Asehraou
Article
  • 72 Downloads

Abstract

The aim of this work is to characterize the potential probiotic properties of 14 antifungal Lactobacillus strains isolated from traditional fermenting Moroccan green olives. The molecular identification of strains indicated that they are composed of five Lactobacillus brevis, two Lactobacillus pentosus, and seven Lactobacillus plantarum. In combination with bile (0.3%), all the strains showed survival rates (SRs) of 83.19–56.51% at pH 3, while 10 strains showed SRs of 31.67–64.44% at pH 2.5. All the strains demonstrated high tolerance to phenol (0.6%) and produced exopolysaccharides. The autoaggregation, hydrophobicity, antioxidant activities, and surface tension value ranges of the strains were 10.29–41.34%, 15.07–34.67%, 43.11–52.99%, and 36.23–40.27 mN/m, respectively. Bacterial cultures exhibited high antifungal activity against Penicillium sp. The cell-free supernatant (CFS) of the cultures showed important inhibition zones against Candida pelliculosa (18.2–24.85 mm), as well as an antibacterial effect against some gram-positive and gram-negative bacteria (10.1–14.1 mm). The neutralized cell-free supernatant of the cultures displayed considerable inhibitory activity against C. pelliculosa (11.2–16.4 mm). None of the strains showed acquired or horizontally transferable antibiotic resistance or mucin degradation or DNase, hemolytic, or gelatinase activities. Lactobacillus brevis S82, Lactobacillus pentosus S75, and Lactobacillus plantarum S62 showed aminopeptidase, β-galactosidase, and β-glucosidase activities, while the other enzymes of API-ZYM were not detected. The results obtained revealed that the selected antifungal Lactobacillus strains are considered suitable candidates for use both as probiotic cultures for human consumption and for starters and as biopreservative cultures in agriculture, food, and pharmaceutical industries.

Keywords

Antifungal Fermentation Lactobacillus Probiotic Olive 

Notes

Funding Information

The authors are grateful to the CNRST (PPR/19/2015), McGill University (Quebec), CNRST-CNR (Morocco-Italy), and Tunisian cooperation (17TM06) for their support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food London, Ontario, Canada, April 30 and May 1, (2002) http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 10 May 2018
  2. 2.
    Speranza B, Racioppo A, Beneduce L, Bevilacqua A, Sinigaglia M, Corbo MR (2017) Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish-based products. Food Microbiol 65:244–253.  https://doi.org/10.1016/j.fm.2017.03.010 CrossRefGoogle Scholar
  3. 3.
    Mizock BA (2015) Probiotics. Dis Mon 61(7):259–290.  https://doi.org/10.1016/j.disamonth.2015.03.011 CrossRefGoogle Scholar
  4. 4.
    Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215.  https://doi.org/10.1016/S0168-1656(00)00375-8 CrossRefGoogle Scholar
  5. 5.
    Ammor MS, Mayo B (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat Sci 76(1):138–146.  https://doi.org/10.1016/j.meatsci.2006.10.022 CrossRefGoogle Scholar
  6. 6.
    Aswathy RG, Ismail B, John RP, Nampoothiri KM (2008) Evaluation of the probiotic characteristics of newly isolated lactic acid bacteria. Appl Biochem Biotechnol 151(2–3):244–255.  https://doi.org/10.1007/s12010-008-8183-6 CrossRefGoogle Scholar
  7. 7.
    Tambekar DH, Bhutada SA (2010) An evaluation of probiotic potential of Lactobacillus sp. from milk of domestic animals and commercial available probiotic preparations in prevention of enteric bacterial infections. Recent Res Sci Technol 2(10):82–88Google Scholar
  8. 8.
    Kumar A, Kumar D (2015) Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe 33:117–123.  https://doi.org/10.1016/j.anaerobe.2015.03.004 CrossRefGoogle Scholar
  9. 9.
    Ren D, Li C, Qin Y, Yin R, Du S, Ye F, Liu C, Liu H, Wang M, Li Y, Sun Y, Li X, Tian M, Jin N (2014) In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30:1–10.  https://doi.org/10.1016/j.anaerobe.2014.07.004 CrossRefGoogle Scholar
  10. 10.
    Pringsulaka O, Rueangyotchanthana K, Suwannasai N, Watanapokasin R, Amnueysit P, Sunthornthummas S, Sukkhum S, Sarawaneeyaruk S, Rangsiruji A (2015) In vitro screening of lactic acid bacteria for multi-strain probiotics. Livest Sci 174:66–73.  https://doi.org/10.1016/j.livsci.2015.01.016 CrossRefGoogle Scholar
  11. 11.
    Cao Z, Pan H, Tong H, Gu D, Li S, Xu Y, Ge C, Lin Q (2015) In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Ann Microbiol 66(3):963–971.  https://doi.org/10.1007/s13213-015-1182-2 CrossRefGoogle Scholar
  12. 12.
    Jampaphaeng K, Cocolin L, Maneerat S (2016) Selection and evaluation of functional characteristics of autochthonous lactic acid bacteria isolated from traditional fermented stinky bean (Sataw-Dong). Ann Microbiol 67(1):25–36.  https://doi.org/10.1007/s13213-016-1233-3 CrossRefGoogle Scholar
  13. 13.
    Khan I, Kang SC (2016) Probiotic potential of nutritionally improved Lactobacillus plantarum DGK-17 isolated from kimchi—a traditional Korean fermented food. Food Control 60:88–94.  https://doi.org/10.1016/j.foodcont.2015.07.010 CrossRefGoogle Scholar
  14. 14.
    Makete G, Aiyegoro OA, Thantsha MS (2017) Isolation, identification and screening of potential probiotic bacteria in milk from south African saanen goats. Probiotics Antimicrob Proteins 9(3):246–254.  https://doi.org/10.1007/s12602-016-9247-5 CrossRefGoogle Scholar
  15. 15.
    Abushelaibi A, Al-Mahadin S, El-Tarabily K, Shah NP, Ayyash M (2017) Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT-Food Sci Technol 79:316–325.  https://doi.org/10.1016/j.lwt.2017.01.041 CrossRefGoogle Scholar
  16. 16.
    Motahari P, Mirdamadi S, Kianirad M (2017) Safety evaluation and antimicrobial properties of Lactobacillus pentosus 22C isolated from traditional yogurt. J Food Meas Charact 11(3):972–978.  https://doi.org/10.1007/s11694-017-9471-z CrossRefGoogle Scholar
  17. 17.
    Aarti C, Khusro A, Varghese R, Arasu MV, Agastian P, Al-Dhabi NA, Ilavenil S, Choi KC (2017) In vitro studies on probiotic and antioxidant properties of Lactobacillus brevis strain LAP2 isolated from hentak, a fermented fish product of north-east India. LWT-Food Sci Technol 86:438–446.  https://doi.org/10.1016/j.lwt.2017.07.055 CrossRefGoogle Scholar
  18. 18.
    Aarti C, Khusro A, Varghese R, Arasu MV, Agastian P, Al-Dhabi NA, Ilavenil S, Choi KC (2018) In vitro investigation on probiotic, anti-Candida, and antibiofilm properties of Lactobacillus pentosus strain LAP1. Arch Oral Biol 89:99–106.  https://doi.org/10.1016/j.archoralbio.2018.02.014 CrossRefGoogle Scholar
  19. 19.
    Rokni Y, Ghabbour N, Chihib NE, Thonart P, Asehraou A (2015) Physico-chemical and microbiological characterization of the natural fermentation of Moroccan picholine green olives variety. J Mater Environ Sci 6(6):1740–1751Google Scholar
  20. 20.
    Peres CM, Alves M, Hernandez-Mendoza A, Moreira L, Silva S, Bronze MR, Vilas-Boas L, Peres C, Malcata FX (2014) Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT-Food Sci Technol 59(1):234–246.  https://doi.org/10.1016/j.lwt.2014.03.003 CrossRefGoogle Scholar
  21. 21.
    Argyri AA, Zoumpopoulou G, Karatzas KA, Tsakalidou E, Nychas GJ, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33(2):282–291.  https://doi.org/10.1016/j.fm.2012.10.005 CrossRefGoogle Scholar
  22. 22.
    Bevilacqua A, Altieri C, Corbo MR, Sinigaglia M, Ouoba LI (2010) Characterization of lactic acid bacteria isolated from Italian Bella di Cerignola table olives: selection of potential multifunctional starter cultures. J Food Sci 75(8):M536–M544.  https://doi.org/10.1111/j.1750-3841.2010.01793.x CrossRefGoogle Scholar
  23. 23.
    Bautista-Gallego J, Arroyo-López FN, Rantsiou K, Jiménez-Díaz R, Garrido-Fernández A, Cocolin L (2013) Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Res Int 50(1):135–142.  https://doi.org/10.1016/j.foodres.2012.10.004 CrossRefGoogle Scholar
  24. 24.
    Ghabbour N, Lamzira Z, Thonart P, Cidalia P, Markaoui M, Asehraou A (2011) Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives. Grasas Aceites 62(1):84–89.  https://doi.org/10.3989/gya.055510 CrossRefGoogle Scholar
  25. 25.
    Ghabbour N, Rokni Y, Lamzira Z, Thonart P, Chihib NE, Peres C, Asehraou A (2016) Controlled fermentation of Moroccan picholine green olives by oleuropein-degrading lactobacilli strains. Grasas Aceites 67(2):e138.  https://doi.org/10.3989/gya.0759152 CrossRefGoogle Scholar
  26. 26.
    Henning C, Vijayakumar P, Adhikari R, Jagannathan B, Gautam D, Muriana PM (2015) Isolation and taxonomic identity of bacteriocin-producing lactic acid bacteria from retail foods and animal sources. Microorganisms 3(1):80–93.  https://doi.org/10.3390/microorganisms3010080 CrossRefGoogle Scholar
  27. 27.
    Rokni Y (2017) Contribution à l’étude de la biodégradation de l’oleuropéine par des souches de bactéries lactiques et de levures isolées des olives vertes en fermentation naturelle. Doctorat en Sciences, Université Mohammed Premier, MarocGoogle Scholar
  28. 28.
    Bergey DH (2009) Bergey’s manual of systematic bacteriology. Springer-Verlag, New YorkGoogle Scholar
  29. 29.
    Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q (2012) Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 135(3):1914–1919.  https://doi.org/10.1016/j.foodchem.2012.06.048 CrossRefGoogle Scholar
  30. 30.
    Angmo K, Kumari A, Savitri, Bhalla TC (2016) Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Sci Technol 66:428–435.  https://doi.org/10.1016/j.lwt.2015.10.057 CrossRefGoogle Scholar
  31. 31.
    Magnusson J, Schnurer J (2001) Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl Environ Microbiol 67(1):1–5.  https://doi.org/10.1128/AEM.67.1.1-5.2001 CrossRefGoogle Scholar
  32. 32.
    Ram Kumar P, Rana S, Kashyap N, Kaur A (2013) Probiotic potential of lactic acid bacteria isolated from food samples: an in vitro study. J Appl Pharm Sci 3(3):85–93.  https://doi.org/10.7324/japs.2013.30317 Google Scholar
  33. 33.
    Zhou JS, Gopal PK, Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Microbiol 63(1–2):81–90.  https://doi.org/10.1016/s0168-1605(00)00398-6 CrossRefGoogle Scholar
  34. 34.
    Domingos-Lopes MF, Stanton C, Ross PR, Dapkevicius ML, Silva CC (2017) Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal pico cheese. Food Microbiol 63:178–190.  https://doi.org/10.1016/j.fm.2016.11.014 CrossRefGoogle Scholar
  35. 35.
    Gilliland SE, Staley TE, Bush LJ (1984) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci 67(12):3045–3051.  https://doi.org/10.3168/jds.S0022-0302(84)81670-7 CrossRefGoogle Scholar
  36. 36.
    Gu RX, Yang ZQ, Li ZH, Chen SL, Luo ZL (2008) Probiotic properties of lactic acid bacteria isolated from stool samples of longevous people in regions of Hotan, Xinjiang and Bama, Guangxi, China. Anaerobe 14(6):313–317.  https://doi.org/10.1016/j.anaerobe.2008.06.001 CrossRefGoogle Scholar
  37. 37.
    Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16(3):189–199.  https://doi.org/10.1016/j.idairyj.2005.02.009 CrossRefGoogle Scholar
  38. 38.
    Lee KW, Shim JM, Park S-K, Heo H-J, Kim H-J, Ham K-S, Kim JH (2016) Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable. LWT-Food Sci Technol 71:130–137.  https://doi.org/10.1016/j.lwt.2016.03.029 CrossRefGoogle Scholar
  39. 39.
    Bonatsou S, Tassou CC, Panagou EZ, Nychas GE (2017) Table olive fermentation using starter cultures with multifunctional potential. Microorganisms 5(2):30.  https://doi.org/10.3390/microorganisms5020030 CrossRefGoogle Scholar
  40. 40.
    Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P, Penna ALB (2017) In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann Microbiol 67(4):289–301.  https://doi.org/10.1007/s13213-017-1258-2 CrossRefGoogle Scholar
  41. 41.
    Anandharaj M, Sivasankari B, Santhanakaruppu R, Manimaran M, Rani RP, Sivakumar S (2015) Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Res Microbiol 166(5):428–439.  https://doi.org/10.1016/j.resmic.2015.03.002 CrossRefGoogle Scholar
  42. 42.
    Kaushik JK, Kumar A, Duary RK, Mohanty AK, Grover S, Batish VK (2009) Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS One 4(12):e8099.  https://doi.org/10.1371/journal.pone.0008099 CrossRefGoogle Scholar
  43. 43.
    Ji K, Jang NY, Kim YT (2015) Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. J Microbiol Biotechnol 25(9):1568–1577.  https://doi.org/10.4014/jmb.1501.01077 CrossRefGoogle Scholar
  44. 44.
    Azat R, Liu Y, Li W, Kayir A, Lin DB, Zhou WW, Zheng XD (2016) Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. J Zhejiang Univ Sci B 17(8):597–609.  https://doi.org/10.1631/jzus.B1500250 CrossRefGoogle Scholar
  45. 45.
    Son S-H, Jeon H-L, Jeon EB, Lee N-K, Park Y-S, Kang D-K, Paik H-D (2017) Potential probiotic Lactobacillus plantarum Ln4 from kimchi: evaluation of β-galactosidase and antioxidant activities. LWT-Food Sci Technol 85:181–186.  https://doi.org/10.1016/j.lwt.2017.07.018 CrossRefGoogle Scholar
  46. 46.
    Sharma D, Saharan BS (2016) Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep 11:27–35.  https://doi.org/10.1016/j.btre.2016.05.001 CrossRefGoogle Scholar
  47. 47.
    Bakhshi N, Soleimanian-Zad S, Sheikh-Zeinoddin M (2017) Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum. Enzym Microb Technol 101:1–8.  https://doi.org/10.1016/j.enzmictec.2017.02.010 CrossRefGoogle Scholar
  48. 48.
    Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H (2014) Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J Dairy Sci 97(12):7334–7343.  https://doi.org/10.3168/jds.2014-7912 CrossRefGoogle Scholar
  49. 49.
    Liu Z, Zhang Z, Qiu L, Zhang F, Xu X, Wei H, Tao X (2017) Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J Dairy Sci 100(9):6895–6905.  https://doi.org/10.3168/jds.2016-11944 CrossRefGoogle Scholar
  50. 50.
    Kanmani P, Satish Kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2013) Probiotics and its functionally valuable products—a review. Crit Rev Food Sci Nutr 53(6):641–658.  https://doi.org/10.1080/10408398.2011.553752 CrossRefGoogle Scholar
  51. 51.
    Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria – potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380.  https://doi.org/10.1016/j.foodcont.2009.07.011 CrossRefGoogle Scholar
  52. 52.
    Moreno I, Marasca ETG, de Sa P, de Souza Moitinho J, Marquezini MG, Alves MRC, Bromberg R (2018) Evaluation of probiotic potential of bacteriocinogenic lactic acid bacteria strains isolated from meat products. Probiotics Antimicrob Proteins 10(4):762–774.  https://doi.org/10.1007/s12602-018-9388-9 CrossRefGoogle Scholar
  53. 53.
    Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R (2016) Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. J Food Safety 36(1):38–51.  https://doi.org/10.1111/jfs.12211 CrossRefGoogle Scholar
  54. 54.
    Casado Munoz Mdel C, Benomar N, Lerma LL, Galvez A, Abriouel H (2014) Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. Int J Food Microbiol 172:110–118.  https://doi.org/10.1016/j.ijfoodmicro.2013.11.025 CrossRefGoogle Scholar
  55. 55.
    Guo H, Pan L, Li L, Lu J, Kwok L, Menghe B, Zhang H, Zhang W (2017) Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products. J Food Sci 82(3):724–730.  https://doi.org/10.1111/1750-3841.13645 CrossRefGoogle Scholar
  56. 56.
    Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M (2017) Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol 123(2):325–339.  https://doi.org/10.1111/jam.13446 CrossRefGoogle Scholar
  57. 57.
    Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach J, Hormannsperger G, Huys G, Levy DD, Lutgendorff F, Mack D, Phothirath P, Solano-Aguilar G, Vaughan E (2010) Safety assessment of probiotics for human use. Gut Microbes 1(3):164–185.  https://doi.org/10.4161/gmic.1.3.12127 CrossRefGoogle Scholar
  58. 58.
    Abe F, Muto M, Yaeshima T, Iwatsuki K, Aihara H, Ohashi Y, Fujisawa T (2010) Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe 16(2):131–136.  https://doi.org/10.1016/j.anaerobe.2009.07.006 CrossRefGoogle Scholar
  59. 59.
    Shekh SL, Dave JM, Vyas BRM (2016) Characterization of Lactobacillus plantarum strains for functionality, safety and γ-amino butyric acid production. LWT-Food Sci Technol 74:234–241.  https://doi.org/10.1016/j.lwt.2016.07.052 CrossRefGoogle Scholar
  60. 60.
    Heavey PM, Rowland IR (2004) Microbial-gut interactions in health and disease. Gastrointestinal cancer. Best Pract Res Clin Gastroenterol 18(2):323–336.  https://doi.org/10.1016/j.bpg.2003.10.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Houssam Abouloifa
    • 1
    Email author
  • Yahya Rokni
    • 1
  • Reda Bellaouchi
    • 1
  • Nabil Ghabbour
    • 1
  • Salwa Karboune
    • 2
  • Milena Brasca
    • 3
  • Riadh Ben Salah
    • 4
  • Nour Eddine Chihib
    • 5
  • Ennouamane Saalaoui
    • 1
  • Abdeslam Asehraou
    • 1
  1. 1.Laboratory of Biochemistry and Biotechnology, Faculty of SciencesMohammed Premier UniversityOujdaMorocco
  2. 2.Department of Food Science and Agricultural Chemistry, Macdonald CampusMcGill UniversityMontrealCanada
  3. 3.Institute of Sciences of Food ProductionNational Research CouncilMilanItaly
  4. 4.Laboratory of Microorganisms and BiomoleculesCentre of Biotechnology of SfaxSfaxTunisia
  5. 5.INRA-UMR UMET 8207— PIHM team, CNRS-INRAUniversity of LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations