The Effects of Probiotics or Synbiotics Supplementation in Women with Polycystic Ovarian Syndrome: a Systematic Review and Meta-Analysis of Randomized Clinical Trials

  • Javad Heshmati
  • Farnaz Farsi
  • Somaye Yosaee
  • Maryam Razavi
  • Mahroo Rezaeinejad
  • Elham Karimie
  • Mahdi SepidarkishEmail author


We searched bibliographic databases from inception through May 2018 to evaluate the effect of probiotics (or synbiotics) supplementation in women suffering from polycystic ovary syndrome (PCOS). Seven trials involving 236 women with PCOS and 235 controls were included in the meta-analysis. Comparing with the control group, probiotics (or synbiotics) may improve Quantitative insulin sensitivity check index (QUICKI) (standardized mean difference (SMD) 0.41, 95% confidence intervals (CI) 0.01 to 0.82, P = 0.04), decrease triglyceride (TG) level (mean difference (MD) − 17.51 mg/dL, 95% CI − 29.65 to − 5.36); fasting insulin: (MD − 2.14 μIU/mL, 95% CI − 4.24 to − 0.04), and increase high-density lipoprotein (HDL) (SMD 1.55 mg/dL, 95% CI 0.28 to 2.81). No significant effect of probiotics (or synbiotics) on homeostatic model assessment-insulin resistance (HOMA-IR), fasting plasma glucose (FPG), low-density lipoprotein (LDL), total cholesterol (TC), and anthropometric indices was found in women with PCOS. Although probiotic (or synbiotics) supplementation was effective on some metabolic indices, the effect was negligible and not clinically significant.


Probiotics Synbiotics Insulin resistance Polycystic ovary syndrome 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Supplementary material

12602_2018_9493_MOESM1_ESM.doc (107 kb)
ESM 1 (DOC 107 kb)
12602_2018_9493_MOESM2_ESM.docx (13 kb)
ESM 2 (DOCX 13.4 kb)


  1. 1.
    Wojciechowski P, Lipowska A, Rys P, Ewens KG, Franks S, Tan S et al (2012) Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome: a systematic review and meta-analysis. Diabetologia 55(10):2636–2645CrossRefGoogle Scholar
  2. 2.
    Hart R, Hickey M, Franks S (2004) Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 18(5):671–683CrossRefGoogle Scholar
  3. 3.
    Brassard M, AinMelk Y, Baillargeon J-P (2008) Basic infertility including polycystic ovary syndrome. Med Clin 92(5):1163–1192Google Scholar
  4. 4.
    Wehr E, Möller R, Horejsi R, Giuliani A, Kopera D, Schweighofer N, Groselj-Strele A, Pieber TR, Obermayer-Pietsch B (2009) Subcutaneous adipose tissue topography and metabolic disturbances in polycystic ovary syndrome. Wien Klin Wochenschr 121(7–8):262–269CrossRefGoogle Scholar
  5. 5.
    Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7(4):219–231CrossRefGoogle Scholar
  6. 6.
    Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS (1995) Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest 96(1):520–527CrossRefGoogle Scholar
  7. 7.
    Puder JJ, Varga S, Kraenzlin M, De Geyter C, Keller U, Müller B (2005) Central fat excess in polycystic ovary syndrome: relation to low-grade inflammation and insulin resistance. J Clin Endocrinol Metab 90(11):6014–6021CrossRefGoogle Scholar
  8. 8.
    Teede H, Deeks A, Moran L (2010) Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med 8(1):41CrossRefGoogle Scholar
  9. 9.
    Baillargeon J-P, Iuorno MJ, Nestler JE (2003) Insulin sensitizers for polycystic ovary syndrome. Clin Obstet Gynecol 46(2):325–340CrossRefGoogle Scholar
  10. 10.
    Moran L, Ranasinha S, Zoungas S, McNaughton S, Brown W, Teede H (2013) The contribution of diet, physical activity and sedentary behaviour to body mass index in women with and without polycystic ovary syndrome. Hum Reprod 28(8):2276–2283CrossRefGoogle Scholar
  11. 11.
    Morin-Papunen L, Rautio K, Ruokonen A, Hedberg P, Puukka M, Tapanainen JS (2003) Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 88(10):4649–4654CrossRefGoogle Scholar
  12. 12.
    Shamasbi SG, Dehgan P, Charandabi SM-A, Aliasgarzadeh A, Mirghafourvand M (2018) The effect of resistant dextrin as a prebiotic on metabolic parameters and androgen level in women with polycystic ovarian syndrome: a randomized, triple-blind, controlled, clinical trial. Eur J Nutr 1–12 (in press)Google Scholar
  13. 13.
    Allen SJ, Jordan S, Storey M, Thornton CA, Gravenor M, Garaiova I, Plummer SF, Wang D, Morgan G (2010) Dietary supplementation with lactobacilli and bifidobacteria is well tolerated and not associated with adverse events during late pregnancy and early infancy–3. J Nutr 140(3):483–488CrossRefGoogle Scholar
  14. 14.
    Misso M, Boyle J, Norman R, Teede H, editors (2014) Development of evidenced-based guidelines for PCOS and implications for community health. Seminars in reproductive medicine. Thieme Medical PublishersGoogle Scholar
  15. 15.
    Heshmati J, Farsi F, Shokri F, Rezaeinejad M, Almasi-Hashiani A, Vesali S, Sepidarkish M (2018) A systematic review and meta-analysis of the probiotics and synbiotics effects on oxidative stress. J Funct Foods 46:66–84CrossRefGoogle Scholar
  16. 16.
    Madjd A, Taylor MA, Mousavi N, Delavari A, Malekzadeh R, Macdonald IA, Farshchi HR (2015) Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: a randomized controlled trial. Am J Clin Nutr 103(2):323–329CrossRefGoogle Scholar
  17. 17.
    Rajkumar H, Kumar M, Das N, Kumar SN, Challa HR, Nagpal R (2015) Effect of probiotic Lactobacillus salivarius UBL S22 and prebiotic fructo-oligosaccharide on serum lipids, inflammatory markers, insulin sensitivity, and gut bacteria in healthy young volunteers: a randomized controlled single-blind pilot study. J Cardiovasc Pharmacol Ther 20(3):289–298CrossRefGoogle Scholar
  18. 18.
    Sanchez M, Darimont C, Drapeau V, Emady-Azar S, Lepage M, Rezzonico E, Ngom-Bru C, Berger B, Philippe L, Ammon-Zuffrey C, Leone P, Chevrier G, St-Amand E, Marette A, Doré J, Tremblay A (2014) Effect of Lactobacillus rhamnosus CGMCC1. 3724 supplementation on weight loss and maintenance in obese men and women. Br J Nutr 111(8):1507–1519CrossRefGoogle Scholar
  19. 19.
    Laitinen K, Poussa T, Isolauri E (2008) Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr 101(11):1679–1687CrossRefGoogle Scholar
  20. 20.
    Shoaei T, Heidari-Beni M, Tehrani HG (2015) Effects of probiotic supplementation on pancreatic β-cell function and c-reactive protein in women with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Int J Prev Med 6:24Google Scholar
  21. 21.
    Ahmadi S, Jamilian M, Karamali M, Tajabadi-Ebrahimi M, Jafari P, Taghizadeh M, Memarzadeh MR, Asemi Z (2017) Probiotic supplementation and the effects on weight loss, glycaemia and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Hum Fertil 20(4):254–261CrossRefGoogle Scholar
  22. 22.
    Ghanei N, Rezaei N, Amiri GA, Zayeri F, Makki G, Nasseri E (2018) The probiotic supplementation reduced inflammation in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. J Funct Foods 42:306–311CrossRefGoogle Scholar
  23. 23.
    Karimi E, Moini A, Yaseri M, Shirzad N, Sepidarkish M, Hossein-Boroujerdi M, Hosseinzadeh-Attar MJ (2018) Effects of synbiotic supplementation on metabolic parameters and apelin in women with polycystic ovary syndrome: a randomised double-blind placebo-controlled trial. Br J Nutr 119(4):398–406CrossRefGoogle Scholar
  24. 24.
    Samimi M, Dadkhah A, Kashani HH, Tajabadi-Ebrahimi M, Hosseini ES, Asemi Z (2018) The effects of synbiotic supplementation on metabolic status in women with polycystic ovary syndrome: a randomized double-blind clinical trial. Probiotics Antimicrob Proteins 1–7 (in press)Google Scholar
  25. 25.
    Nasri K, Jamilian M, Rahmani E, Bahmani F, Tajabadi-Ebrahimi M, Asemi Z (2018) The effects of synbiotic supplementation on hormonal status, biomarkers of inflammation and oxidative stress in subjects with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. BMC Endocr Disord 18(1):21CrossRefGoogle Scholar
  26. 26.
    Karamali M, Eghbalpour S, Rajabi S, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M et al (2018) Effects of probiotic supplementation on hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Arch Iran Med (AIM) 21(1):1–7Google Scholar
  27. 27.
    John GK, Wang L, Nanavati J, Twose C, Singh R, Mullin G (2018) Dietary alteration of the gut microbiome and its impact on weight and fat mass: a systematic review and meta-analysis. Genes 9(3):167CrossRefGoogle Scholar
  28. 28.
    Mazidi M, Rezaie P, Ferns GA, Vatanparast H (2017) Impact of probiotic administration on serum c-reactive protein concentrations: systematic review and meta-analysis of randomized control trials. Nutrients 9(1):20CrossRefGoogle Scholar
  29. 29.
    Akbari V, Hendijani F (2016) Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutr Rev 74(12):774–784CrossRefGoogle Scholar
  30. 30.
    Ruan Y, Sun J, He J, Chen F, Chen R, Chen H (2015) Effect of probiotics on glycemic control: a systematic review and meta-analysis of randomized, controlled trials. PLoS One 10(7):e0132121CrossRefGoogle Scholar
  31. 31.
    Kasinska MA, Drzewoski J (2015) Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn 125(11):803–813PubMedGoogle Scholar
  32. 32.
    Tabrizi R, Moosazadeh M, Lankarani KB, Akbari M, Heydari ST, Kolahdooz F et al (2017) The effects of synbiotic supplementation on glucose metabolism and lipid profiles in patients with diabetes: a systematic review and meta-analysis of randomized controlled trials. Probiotics Antimicrob Proteins 10(2):329–42Google Scholar
  33. 33.
    Fernandes R, do Rosario VA, Mocellin MC, Kuntz MG, Trindade EB (2017) Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: a systematic review. Clin Nutr 36(5):1197–1206CrossRefGoogle Scholar
  34. 34.
    Li C, Li X, Han H, Cui H, Peng M, Wang G et al (2016) Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: a meta-analysis of randomized, controlled trials. Medicine (Baltimore) 95(26):e4088Google Scholar
  35. 35.
    He J, Zhang F, Han Y (2017) Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: a meta-analysis of RCTs. Medicine 96(51):e9166CrossRefGoogle Scholar
  36. 36.
    Wu Y, Zhang Q, Ren Y, Ruan Z (2017) Effect of probiotic lactobacillus on lipid profile: a systematic review and meta-analysis of randomized, controlled trials. PLoS One 12(6):e0178868CrossRefGoogle Scholar
  37. 37.
    Cho YA, Kim J (2015) Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine 94(43):e1714Google Scholar
  38. 38.
    Gilliland S, Nelson C, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 49(2):377–381PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim G-B, Yi S-H, Lee B (2004) Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. J Dairy Sci 87(2):258–266CrossRefGoogle Scholar
  40. 40.
    Liong M-T, Dunshea FR, Shah NP (2007) Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high-and low-fat diets. Br J Nutr 98(4):736–744CrossRefGoogle Scholar
  41. 41.
    Nielsen TS, Jensen BB, Purup S, Jackson S, Saarinen M, Lyra A, Sørensen JF, Theil PK, Knudsen KEB (2016) A search for synbiotics: effects of enzymatically modified arabinoxylan and Butyrivibrio fibrisolvens on short-chain fatty acids in the cecum content and plasma of rats. Food Funct 7(4):1839–1848CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Javad Heshmati
    • 1
  • Farnaz Farsi
    • 2
    • 3
  • Somaye Yosaee
    • 4
    • 5
  • Maryam Razavi
    • 6
  • Mahroo Rezaeinejad
    • 7
  • Elham Karimie
    • 7
  • Mahdi Sepidarkish
    • 8
    Email author
  1. 1.Department of Nutritional Science, School of Nutritional Science and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
  2. 2.Colorectal research centerIran University of Medical SciencesTehranIran
  3. 3.Department of Nutrition, School of public HealthIran University of Medical SciencesTehranIran
  4. 4.Department of Nutrition, School of HealthLarestan University of Medical SciencesLarestanIran
  5. 5.Department of Nutrition, Emam Reza teaching hospitalLarestan University of Medical SciencesLarestanIran
  6. 6.Pregnancy Health Research Center, Department of Obstetrics and Gynecology, School of MedicineZahedan University of Medical SciencesZahedanIran
  7. 7.Department of Obstetrics and Gynecology, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran
  8. 8.Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran

Personalised recommendations