Advertisement

Effect of Lyophilized, Encapsulated Lactobacillus fermentum and Lactulose Feeding on Growth Performance, Heavy Metals, and Trace Element Residues in Rainbow Trout (Oncorhynchus mykiss) Tissues

  • Sheyda Madreseh
  • Hamid Reza Ghaisari
  • Saeid HosseinzadehEmail author
Article
  • 64 Downloads

Abstract

Heavy metals naturally occur in the environment and are causing great concern all around the world. Accumulation of heavy metals in fish tissues can lead to serious adverse effects in humans when consumed in the amounts exceeding the safe consumption levels. In this study, Lactobacillus fermentum 1744 (ATCC 14931) and lactulose were used in the fish diet in order to investigate their effects on growth performance, intestinal villous morphology, and heavy metals residues. Fishes were randomly allocated into three replicates of five different treatments. The control group received the basal diet, while the experimental groups were fed on the basal diet supplemented with encapsulated and lyophillized probiotic, lactulose (prebiotic) and L. fermentum, and lactulose as synbiotic. All the groups were fed three times daily for a period of 56 days. At the end of growth period, 10 fish per replicate were randomly collected in order to take the samples of the fillet, gills, and liver. Results showed that the encapsulated L. fermentum plus lactulose improve growth performance and exclude absorption and accumulation of heavy metals in rainbow trout liver and gills. The villous height were increased in all the samples except the group 2 fed on the lactulose (p < 0.05).

Keywords

Probiotic Prebiotic Synbiotic Heavy metals Fish Growth performance 

Notes

Compliance with Ethical Standards

Ethical Approval

The experiment was carried out at the Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Iran. We approved this experiment done under ethical standards. All applicable international, national, and institutional guidelines for the care and use of animals were followed. This manuscript has been read and approved by all authors and has not been published, totally or partly, in any other journal.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Sharifian M, Esteban MÁ (2015) Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish Shellfish Immunol 45(1):27–32.  https://doi.org/10.1016/j.fsi.2015.03.029 CrossRefPubMedGoogle Scholar
  2. 2.
    Firouzbakhsh F, Mehrabi Z, Heydari M, Khalesi MK, Tajick MA (2014) Protective effects of a synbiotic against experimental Saprolegnia parasitica infection in rainbow trout (Oncorhynchus mykiss). Aquac Res 45(4):609–618.  https://doi.org/10.1111/j.1365-2109.2012.03261.x CrossRefGoogle Scholar
  3. 3.
    Varol M, Kaya GK, Alp A (2017) Heavy metal and arsenic concentrations in rainbow trout (Oncorhynchus mykiss) farmed in a dam reservoir on the Firat (Euphrates) River: risk-based consumption advisories. Sci Total Environ J 599:1288–1296.  https://doi.org/10.1016/j.scitotenv.2017.05.052 CrossRefGoogle Scholar
  4. 4.
    Guo H, Chen L, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B (2015) Research advances on pathways of nickel-induced apoptosis. Int J Mol Sci 17(1):10.  https://doi.org/10.3390/ijms17010010 CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Gümüş E, Kubilay A, Guney Ş, Guzel-Seydim Z, Kok-Tas T, Metin S, Ulukoy G (2017) Effect of dietary kefir on the growth performance, feed utilization and fatty acid profile of juvenile rainbow trout, Oncorhynchus mykiss. Aquac Nutr 23(5):964–972.  https://doi.org/10.1111/anu.12464 CrossRefGoogle Scholar
  6. 6.
    Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol 102(4):379–388.  https://doi.org/10.1016/j.vetimm.2004.08.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Abhari K, Shekarforoush S, Sajedianfard J, Hosseinzadeh S, Nazifi S (2015) The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota. Iran J Vet Res 16(3):267–273.  https://doi.org/10.22099/ijvr.2015.3192 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Giannenas I, Karamaligas I, Margaroni M, Pappas I, Mayer E, Encarnação P, Karagouni E (2015) Effect of dietary incorporation of a multi-strain probiotic on growth performance and health status in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 41(1):119–128.  https://doi.org/10.1007/s10695-014-0010-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Zoghi A, Khosravi-Darani K, Sohrabvandi S (2014) Surface binding of toxins and heavy metals by probiotics. Mini-Rev Med Chem 14(1):84–98CrossRefGoogle Scholar
  10. 10.
    Tulumoğlu Ş, Kaya Hİ, Şimşek Ö (2014) Probiotic characteristics of Lactobacillus fermentum strains isolated from tulum cheese. Anaerobe 30:120–125.  https://doi.org/10.1016/j.anaerobe.2014.09.015 CrossRefPubMedGoogle Scholar
  11. 11.
    Michael ET, Amos SO, Hussaini LT (2014) A review on probiotics application in aquaculture. Fish Aquac J 5(4):1.  https://doi.org/10.4172/2150-3508.1000111 CrossRefGoogle Scholar
  12. 12.
    Capela P, Hay T, Shah N (2006) Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res Int 39(2):203–211.  https://doi.org/10.1016/j.foodres.2005.07.007 CrossRefGoogle Scholar
  13. 13.
    Divya JB, Nampoothiri KM (2015) Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods. Bioresour Technol 188:226–230.  https://doi.org/10.1016/j.biortech.2015.01.073 CrossRefPubMedGoogle Scholar
  14. 14.
    Calik A, Ergün A (2015) Effect of lactulose supplementation on growth performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poult Sci 94(9):2173–2182.  https://doi.org/10.3382/ps/pev182 CrossRefPubMedGoogle Scholar
  15. 15.
    Yar-Ahmadi P, Moradi N, Ghysvandi N (2014) The effect of dietary supplemented with Synbiotic (Biomin IMBO®) on growth performance, carcass composition, hematological and serum biochemical parameters of common carp (Cyprinus carpio Linnaeus, 1758, Cyprinidae). J Chem Biol Phys Sci (JCBPS) 4(3):2129Google Scholar
  16. 16.
    Dehaghani PG, Baboli MJ, Moghadam AT, Ziaei-Nejad S, Pourfarhadi M (2015) Effect of synbiotic dietary supplementation on survival, growth performance, and digestive enzyme activities of common carp (Cyprinus carpio) fingerlings. Czech J Anim Sci 60(5):224–232.  https://doi.org/10.17221/8172-CJAS CrossRefGoogle Scholar
  17. 17.
    Ringø E, Song S (2016) Application of dietary supplements (synbiotics and probiotics in combination with plant products and β-glucans) in aquaculture. Aquac Nutr 22(1):4–24 http://onlinelibrary.wiley.com/enhanced/exportCitation/doi/10.1111/anu.12349 CrossRefGoogle Scholar
  18. 18.
    Fallah AA, Saei-Dehkordi SS, Nematollahi A, Jafari T (2011) Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem J 98(2):275–279.  https://doi.org/10.1016/j.microc.2011.02.007 CrossRefGoogle Scholar
  19. 19.
    Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159(10):2575–2585.  https://doi.org/10.1016/j.envpol.2011.06.011 CrossRefPubMedGoogle Scholar
  20. 20.
    Topal A, Atamanalp M, Oruç E, Erol HS (2017) Physiological and biochemical effects of nickel on rainbow trout (Oncorhynchus mykiss) tissues: assessment of nuclear factor kappa B activation, oxidative stress and histopathological changes. Chemosphere 166:445–452.  https://doi.org/10.1016/j.chemosphere.2016.09.106 CrossRefPubMedGoogle Scholar
  21. 21.
    Abbaszadeh S, Gandomi H, Misaghi A, Bokaei S, Noori N (2014) The effect of alginate and chitosan concentrations on some properties of chitosan-coated alginate beads and survivability of encapsulated Lactobacillus rhamnosus in simulated gastrointestinal conditions and during heat processing. J Sci Food Agric 94(11):2210–2216 http://onlinelibrary.wiley.com/enhanced/exportCitation/doi/10.1002/jsfa.6541 CrossRefGoogle Scholar
  22. 22.
    Kos B, Šušković J, Beganović J, Gjuračić K, Frece J, Iannaccone C, Canganella F (2008) Characterization of the three selected probiotic strains for the application in food industry. World J Microbiol Biotechnol 24(5):699–707.  https://doi.org/10.1007/s11274-007-9528-y CrossRefGoogle Scholar
  23. 23.
    Batista S, Ramos M, Cunha S, Barros R, Cristóvão B, Rema P, Pires M, Valente L, Ozório R (2015) Immune responses and gut morphology of Senegalese sole (Solea senegalensis, Kaup 1858) fed monospecies and multispecies probiotics. Aquac Nutr 21(5):625–634.  https://doi.org/10.1111/anu.12191 CrossRefGoogle Scholar
  24. 24.
    Ramos M, Gonçalves J, Batista S, Costas B, Pires M, Rema P, Ozório R (2015) Growth, immune responses and intestinal morphology of rainbow trout (Oncorhynchus mykiss) supplemented with commercial probiotics. Fish Shellfish Immunol 45(1):19–26.  https://doi.org/10.1016/j.fsi.2015.04.001 CrossRefPubMedGoogle Scholar
  25. 25.
    Tsirtsikos P, Fegeros K, Balaskas C, Kominakis A, Mountzouris K (2012) Dietary probiotic inclusion level modulates intestinal mucin composition and mucosal morphology in broilers. Poult Sci 91(8):1860–1868.  https://doi.org/10.3382/ps.2011-02005 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhai Q, Wang H, Tian F, Zhao J, Zhang H, Chen W (2017) Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquac Res 48:5094–5103.  https://doi.org/10.1111/are.13326 CrossRefGoogle Scholar
  27. 27.
    Abu-Braka AZ, Zaki MS, Abbas HH, Ismail NEDA, Khalil R, Tanekhy M, Saad T (2017) Filed studies on some probiotics to minimize hazard effects of prevailing heavy metals contamination for improving immunity and growth performance of Oreochromis niloticus. Electron Physician 9(4):4138.  https://doi.org/10.19082/4138 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Majlesi M, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH (2017) Effect of probiotic Bacillus coagulans and Lactobacillus plantarum on alleviation of mercury toxicity in rat. Probiotics Antimicrob Proteins 9:1–10.  https://doi.org/10.1007/s12602-017-9257-y CrossRefGoogle Scholar
  29. 29.
    Tian F, Zhai Q, Zhao J, Liu X, Wang G, Zhang H, Zhang H, Chen W (2012) Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol Trace Elem Res 150(1–3):264–271.  https://doi.org/10.1007/s12011-012-9462-1 CrossRefPubMedGoogle Scholar
  30. 30.
    Beveridge T, Murray R (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mueller JG, Chapman PJ, Pritchard PH (1989) Creosote-contaminated sites. Their potential for bioremediation. Environ Sci Technol 23(10):1197–1201CrossRefGoogle Scholar
  32. 32.
    Jafarpour D, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH (2017) Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats. BMC Complem Altern Med 17(1):291.  https://doi.org/10.1186/s12906-017-1803-3 CrossRefGoogle Scholar
  33. 33.
    Halttunen T, Finell M, Salminen S (2007) Arsenic removal by native and chemically modified lactic acid bacteria. Int J Food Microbiol 120(1):173–178.  https://doi.org/10.1016/j.ijfoodmicro.2007.06.002 CrossRefPubMedGoogle Scholar
  34. 34.
    Poorbaghi S, Gheisari H, Dadras H (2013) Intestinal survival of simple and microencapsulated Lactobacilus acidophilus: response to inulin consumption in broiler chickens. Online J Vet Res 17(11):669–674Google Scholar
  35. 35.
    Pinpimai K, Rodkhum C, Chansue N, Katagiri T, Maita M, Pirarat N (2015) The study on the candidate probiotic properties of encapsulated yeast, Saccharomyces cerevisiae JCM 7255, in Nile Tilapia (Oreochromis niloticus). Res Vet Sci 102:103–111.  https://doi.org/10.1016/j.rvsc.2015.07.021 CrossRefPubMedGoogle Scholar
  36. 36.
    Pirarat N, Pinpimai K, Rodkhum C, Chansue N, Ooi EL, Katagiri T, Maita M (2015) Viability and morphological evaluation of alginate-encapsulated Lactobacillus rhamnosus GG under simulated tilapia gastrointestinal conditions and its effect on growth performance, intestinal morphology and protection against Streptococcus agalactiae. Anim Feed Sci Technol 207:93–103.  https://doi.org/10.1016/j.anifeedsci.2015.03.002 CrossRefGoogle Scholar
  37. 37.
    Hosseini M, Nabavi SMB, Nabavi SN, Pour NA (2015) Heavy metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: risk assessment for the consumers. Environ Monit Assess 187(5):237.  https://doi.org/10.1007/s10661-015-4464-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sheyda Madreseh
    • 1
  • Hamid Reza Ghaisari
    • 1
  • Saeid Hosseinzadeh
    • 1
    Email author
  1. 1.Department of Food Hygiene and Public Health, School of Veterinary MedicineShiraz UniversityShirazIran

Personalised recommendations