Advertisement

Probiotics and Antimicrobial Proteins

, Volume 11, Issue 2, pp 470–477 | Cite as

Modulatory Effect of the Intracellular Content of Lactobacillus casei CRL 431 Against the Aflatoxin B1-Induced Oxidative Stress in Rats

  • J. E. Aguilar-Toalá
  • H. Astiazarán-García
  • M.C. Estrada-Montoya
  • H. S. Garcia
  • B. Vallejo-Cordoba
  • A. F. González-Córdova
  • A. Hernández-MendozaEmail author
Article

Abstract

It has been recognized that lactic acid bacteria exhibit antioxidant properties, which have been mainly endorsed to the intact viable bacteria. However, recent studies have shown that intracellular content (IC) may also be good sources of antioxidative metabolites, which may potentially contribute to oxidative homeostasis in vivo. Hence, the modulatory effect of the intracellular content of Lactobacillus casei CRL 431 (IC431) on aflatoxin B1 (AFB1)-induced oxidative stress in rats was evaluated on the basis of its influence on hepatic lipid peroxidation (LPO), antioxidant status-antioxidant capacity (TAC), catalase (CAT), and glutathione peroxidase (GPx) activities; and on the oxidative stress index (OSi). Results demonstrated that CAT and GPx activities, and TAC, determined in plasma samples, were significantly (P < 0.05) higher in rats treated with AFB1 plus IC431 (3.98 μM/min/mg protein, 1.88 μM/min/mg protein, and 238.7 μM Trolox equivalent, respectively) than AFB1-treated rats (3.47 μM/min/mg protein, 1.46 μM/min/mg protein, and 179.7 μM Trolox equivalent, respectively). Furthermore, plasma and liver tissue samples from rats treated with AFB1 plus IC431 showed significantly (P < 0.05) lower LPO values (52 and 51%, respectively) and OSi (59 and 51%, respectively) than AFB1-treated rats. Hence, our results proved that the intracellular content of Lact. casei CRL 431 contains metabolites that are capable to modulate the antioxidant defense systems in living organism, which may help to ameliorate the damage associated to AFB1-induced oxidative stress.

Keywords

Antioxidant Intracellular content Lactobacillus Oxidative stress 

Notes

Acknowledgements

The authors thank the National Council for Science and Technology (CONACyT) of Mexico for the graduate scholarship of author Aguilar-Toalá.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were approved by the Institutional Ethics Committee of Centro de Investigación en Alimentación y Desarrollo, A.C.

References

  1. 1.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefPubMedGoogle Scholar
  2. 2.
    Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95CrossRefPubMedGoogle Scholar
  3. 3.
    Henkler F, Brinkmann J, Luch A (2010) The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers 2:376–396CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang HY, Lee TH (2015) Antioxidant enzymes as redox-based biomarkers: a brief review. BMB Rep 48:200–208CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87CrossRefGoogle Scholar
  8. 8.
    Bouayed J, Bohn T (2010) Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med Cell Longev 3:228–237CrossRefGoogle Scholar
  9. 9.
    Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31:1949–1956CrossRefGoogle Scholar
  10. 10.
    Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q (2012) Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 135:1914–1919CrossRefPubMedGoogle Scholar
  11. 11.
    Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817CrossRefPubMedGoogle Scholar
  12. 12.
    Martarelli D, Verdenelli MC, Scuri S, Cocchioni M, Silvi S, Cecchini C, Pompei P (2011) Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr Microbiol 62:1689–16896CrossRefPubMedGoogle Scholar
  13. 13.
    Kullisaar T, Songisepp E, Milkesarr M, Zilmer K, Vihalemm T, Zilmer M (2003) Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr 90:449–456CrossRefPubMedGoogle Scholar
  14. 14.
    Songisepp E, Kals J, Kullisaar T, Mandar R, Hutt P, Zilmer M, Mikelsaar M (2005) Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr J 4:22–32CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chamari M, Djazayery A, Jalali M, Yeganeh HS, Hosseini S, Heshmat R, Haeri BB (2008) The effect of daily consumption of probiotic and conventional yoghurt on some oxidative stress factors in plasma of young healthy women. ARYA Atheroscler J 4:175–179Google Scholar
  16. 16.
    Lin MY, Chang F (2000) Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci 45:1617–1622CrossRefPubMedGoogle Scholar
  17. 17.
    Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, Kilk A (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72:215–224CrossRefPubMedGoogle Scholar
  18. 18.
    Lee J, Hwang KY, Chung MY, Cho DH, Park CS (2005) Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect. J Food Sci 70:388–391CrossRefGoogle Scholar
  19. 19.
    Saide JA, Gilliland SE (2005) Antioxidative activity of Lactobacilli measured by oxygen radical absorbance capacity. J Dairy Sci 88:1352–1357CrossRefPubMedGoogle Scholar
  20. 20.
    Kim HS, Chae HS, Jeong SG, Ham JS, Im SK, Ahn C, Lee JM (2006) In vitro antioxidative properties of lactobacilli. Asian-Australasian. J Anim Sci 19:262–265Google Scholar
  21. 21.
    Bibas Bonet ME, De Petrino SF, Mesón O, Perdigón G (2005) Antitumour effect of Lactobacillus casei CRL 431 on different experimental tumours. Food Agric Immunol 16:181–191CrossRefGoogle Scholar
  22. 22.
    Maldonado Galdeano C, Perdigón G (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226CrossRefPubMedGoogle Scholar
  23. 23.
    González-Córdova AF, Beltrán-Barrientos LM, Santiago-Lopez L, Garcia HS, Vallejo-Cordoba B, Hernandez-Mendoza A (2016) Phytate-degrading activity of probiotic bacteria exposed to simulated gastrointestinal fluids. LWT Food Sci Technol 73:67–73CrossRefGoogle Scholar
  24. 24.
    Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47:1460–1466CrossRefPubMedGoogle Scholar
  25. 25.
    Hernandez-Mendoza A, Garcia HS, Steele JL (2009) Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem Toxicol 47:1064–1068CrossRefPubMedGoogle Scholar
  26. 26.
    Fraga CG, Oteiza PI, Galleano M (2014) In vitro measurements and interpretation of total antioxidant capacity. Biochim Biophys Acta 1840:931–934CrossRefPubMedGoogle Scholar
  27. 27.
    Rubio CP, Hernández-Ruiz J, Martínez-Subiela S, Tvarijonaviciute A, Ceron JJ (2016) Spectrophtometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC Vet Res 12:1–7CrossRefGoogle Scholar
  28. 28.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237CrossRefPubMedGoogle Scholar
  29. 29.
    Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626CrossRefGoogle Scholar
  30. 30.
    Todorova T, Simeonova G, Kyuchukova D, Dinev D, Gadjeva V (2005) Reference values of oxidative stress parameters (MDA, SOD CAT) in dogs and cats. Comp Clin Pathol 13:190–194CrossRefGoogle Scholar
  31. 31.
    Hwang JW, Kim EK, Lee SJ, Kim YS, Choi DK, Park TK, Moon SH, Jeon BT, Park PJ (2012) Anthocyanin effectively scavenges free radicals and protects retinal cells from H2O2-triggered G2/M arrest. Eur Food Res Technol 234:431–439CrossRefGoogle Scholar
  32. 32.
    Salbego J, Becker AG, Goncalves JF, Menezes CC, Heldwein CG, Spanevello RM, Loro VL, Schetinger MRC, Morsch VM, Heinzmann BM, Baldisserotto B (2014) The essential oil from Lippia alba induces biochemical stress in the silver catfish (Rhamdia quelen) after transportation. Neotrop Ichthyyol 12:811–818CrossRefGoogle Scholar
  33. 33.
    Hernandez-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Garcia HS (2011) Effect of oral supplementation of Lactobacillus reuteri in reduction of intestinal absorption of aflatoxin B1 in rats. J Basic Microbiol 51:263–268CrossRefPubMedGoogle Scholar
  34. 34.
    Ward JM, Sontag JM, Weisburger EK, Brown CA (1975) Effect of life time exposure to aflatoxin B1 in rats. Natl Cancer Inst 55:107–113CrossRefGoogle Scholar
  35. 35.
    Trebak F, Alaoui A, Alexandre D, Ouezzani SE, Anouar Y, Chartrel N, Magoul R (2015) Impact of aflatoxin B1 on hypothalamic neuropeptides regulating feeding behavior. Neurotoxicology 49:165–173CrossRefPubMedGoogle Scholar
  36. 36.
    Abdel-Wahhab M, Ahmed HH, Hazagi MM (2006) Prevention of aflatoxin B1-initiated hepatotoxicity in rat by marine algae extract. J Appl Toxicol 26:229–238CrossRefPubMedGoogle Scholar
  37. 37.
    Barber MD, McMillan DC, Wallace AM, Roos JA, Preston T (2004) The response of leptin, interleukin-6 and fat oxidation to feeding in weight-losing patients with pancreatic cancer. Br J Cancer 90:1129–1132CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29:1106–1114CrossRefGoogle Scholar
  39. 39.
    Baser U, Gamsiz-Isik H, Cifcibasi E, Yalcin F (2015) Plasma and salivary total antioxidant capacity in healthy controls compared with aggressive and chronic periodontitis patients. Saudi Med J 36:856–861CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shen HM, Shi CY, Shen Y, Ong CN (1996) Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic Biol Med 21:139–146CrossRefPubMedGoogle Scholar
  41. 41.
    Caro AA, Cerderbaum AI (2004) Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol 4(44):27–42CrossRefGoogle Scholar
  42. 42.
    Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150CrossRefPubMedGoogle Scholar
  43. 43.
    El-Nekeety AA, Mohamend SR, Hathout AS, Hassan NS, Aly SE, Abdel-Wahhab MA (2011) Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon 57:984–991CrossRefPubMedGoogle Scholar
  44. 44.
    da Silva RA, Aguilar-da-Silva SH (2015) Avaliation of the stress metabolic in Wistar rats intoxicated with aflatoxin B1. Brazilian J Med Hum Health 3:1–7Google Scholar
  45. 45.
    Xing J, Wang G, Zhang Q, Liu X, Gu Z, Zhang H, Chen YQ, Chen W (2015) Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS One 10:e0119058.  https://doi.org/10.1371/journal.pone.0119058 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li W, Ji J, Rui X, Yu J, Tang W, Chen X, Jiang M, Dong M (2014) Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT Food Sci Technol 59:732–739CrossRefGoogle Scholar
  47. 47.
    Xu R, Shang N, Li P (2010) In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe 17:226–231CrossRefGoogle Scholar
  48. 48.
    Yamamoto Y (2009) Identification of antioxidant(s) from lactic acid bacteria and screening of high antioxidative strain. Noda Institute for Scientific Research. http://www.nisr.or.jp/englishHP/report2009/NISR09Yamamoto.pdf. Accessed 27 January 2017
  49. 49.
    Endo N, Nishiyama K, Otsuka A, Kanouchi H, Taga M, Oka T (2006) Antioxidant activity of vitamin B6 delays homocysteine-induced atherosclerosis in rats. Br J Nutr 95:1088–1093CrossRefPubMedGoogle Scholar
  50. 50.
    LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F (2011) B-group vitamin production by lactic acid bacteria-current knowledge and potential applications. J Appl Microbiol 111:1297–1309CrossRefPubMedGoogle Scholar
  51. 51.
    Wang G, Wang T (2010) The role of plasmalogen in the oxidative stability of neutral lipids and phospholipids. J Agric Food Chem 58:2554–2561CrossRefPubMedGoogle Scholar
  52. 52.
    Yoon YH, Byun JR (2004) Occurrence of glutathione sulphydryl (GSH) and antioxidant activities in probiotic Lactobacillus spp. Asian Australas J Anim Sci 17:1582–1585CrossRefGoogle Scholar
  53. 53.
    Annalisa N, Alessio T, Claudette TD, Erald V, Antonino DL, Nicola DD (2014) Gut microbioma population: an indicator really sensible to any change in age, diet, metabolic syndrome, and life-style. Mediat Inflamm 2014:1–11.  https://doi.org/10.1155/2014/901308 CrossRefGoogle Scholar
  54. 54.
    Abdel-Wahhab MA, Aly SE (2003) Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet. J Agric Food Chem 51:2409–2414CrossRefPubMedGoogle Scholar
  55. 55.
    Choudhary A, Verma RJ (2005) Ameliorative effects of black tea extract on aflatoxin-induced lipid peroxidation in the liver of mice. Food Chem Toxicol 43:99–104CrossRefPubMedGoogle Scholar
  56. 56.
    Naaz F, Abdin MZ, Javed S (2014) Protective effect of esculin against prooxidant aflatoxin B1-induced nephrotoxicity in mice. Micotoxin Res 31:25–32CrossRefGoogle Scholar
  57. 57.
    Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chauhan R, Vasanthakumari AS, Panwar H, Mallapa R, Duary RK, Batish VK, Grover S (2014) Amelioration of colitis in mouse model by exploring antioxidative potentials of an indigenous probiotic strain of Lactobacillus fermentum Lf1. Biomed Res Int 2014:1–12.  https://doi.org/10.1155/2014/206732 CrossRefGoogle Scholar
  59. 59.
    Gao D, Gao Z, Zhu G (2013) Antioxidant effect of Lactobacillus plantarum via activation of transcription factor Nrf2. Food Funct 4:982–989CrossRefPubMedGoogle Scholar
  60. 60.
    Huang L, Duan C, Xhao Y, Gao L, Niu C, Xu J, Li S (2017) Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: a potential probiotic strain isolated from Chinese traditional fermented food. PLoS One 12(1):e0170109.  https://doi.org/10.1371/journal.pone.0170109 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bing SR, Kinouchi T, Kataoka K, Kuwahara T, Ohnishi Y (1998) Protective effects of a culture supernatant of Lactobacillus acidophilus and antioxidants on ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug. Microbiol Immunol 42:745–753CrossRefPubMedGoogle Scholar
  62. 62.
    Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W (2012) Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 303:32–41CrossRefGoogle Scholar
  63. 63.
    Hathout AS, Mohamed SR, El-Nekeety AA, Hassan NS, Aly SE, Abdel-Wahhab MA (2011) Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 58:179–186CrossRefPubMedGoogle Scholar
  64. 64.
    Arifin WN, Zahiruddin WM (2017) Sample size calculation in animal studies using resource equation approach. Malays J Med Sci 24:101–105PubMedPubMedCentralGoogle Scholar
  65. 65.
    Charan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4:303–306CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1:87–93CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. E. Aguilar-Toalá
    • 1
  • H. Astiazarán-García
    • 2
  • M.C. Estrada-Montoya
    • 1
  • H. S. Garcia
    • 3
  • B. Vallejo-Cordoba
    • 1
  • A. F. González-Córdova
    • 1
  • A. Hernández-Mendoza
    • 1
    Email author
  1. 1.Laboratorio de Química y Biotecnología de Productos LácteosCentro de Investigación en Alimentación y Desarrollo A.C. (CIAD)HermosilloMexico
  2. 2.Laboratorio de Patología ExperimentalCentro de Investigación en Alimentación y Desarrollo A.C. (CIAD)HermosilloMexico
  3. 3.Unidad de Investigación y Desarrollo en Alimentos (UNIDA)Instituto Tecnológico de Veracruz M. A. de Quevedo 2279VeracruzMexico

Personalised recommendations