Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 248–255 | Cite as

Effects of Probiotic Bacteria Bacillus on Growth Performance, Digestive Enzyme Activity, and Hematological Parameters of Asian Sea Bass, Lates calcarifer (Bloch)

  • Taida Juliana Adorian
  • Hadi JamaliEmail author
  • Hamed Ghafari Farsani
  • Paria Darvishi
  • Soleiman Hasanpour
  • Tahereh Bagheri
  • Reza Roozbehfar


This study was conducted to evaluate different doses of two species of Bacillus (Bacillus licheniformis and Bacillus subtilis), on growth parameters, chemical composition of fish, activity of liver, and digestive enzymes of Asian sea bass. During 8 weeks, juvenile Asian sea bass received diets supplemented with 1 × 103, 1 × 106, and 1 × 109 CFU g−1 probiotic in addition to a control diet without added microorganisms. At the end of the trial, growth indices (total weight, total length, specific growth rate, total weight gain, food conversion ratio, and condition factor), body composition (crude protein, crude lipid, ash, and dry matter), digestive enzymes (protease, lipase, and amylase), liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP)], immunologic indicators (lysozyme), and hematological parameters [hematocrit (Hct), hemoglobin (Hb), red blood cells (RBCs), white blood cells (WBCs)] were assessed. Asian sea bass receiving diets supplemented with probiotic Bacillus (Bacillus licheniformis and Bacillus subtilis) showed significantly better growth than those fed the basal diet (control). Regarding body composition, total protein levels and dry matter were higher and lipid levels were lower in fish fed the diet containing 1 × 106 CFU g−1 probiotic compared with the control group (P < 0.05). Digestive enzymes (protease, lipase, and amylase) and hematological parameters (RBC, WBC, and Hb) were all highest in fish fed diet supplemented with 1 × 106 CFU g−1 probiotic Bacillus. Also, liver enzymes (AST, ALT, ALP) were lower in fish fed diet supplemented with 1 × 106 CFU g−1 probiotic Bacillus. Being that supplementation of 1 × 106 CFU g−1 of Bacillus in the diet is the dose which delivers the best results.


Probiotic Bacillus Fish Immune system Growth promoter 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Glencross B (2006) The nutritional management of barramundi, Lates calcarifer—a review. Aquacul Nutrit 12(4):291–309. CrossRefGoogle Scholar
  2. 2.
    Haque SA, Reza MS, Islam MA, Roy VC, Alam MA (2014) Effects of antibiotic on bacterial flora in mrigal fish (Cirhinus cirhosus, Bloch, 1795) under laboratory condition. Eur Food Res Technol 2:1–7Google Scholar
  3. 3.
    Kashem MA (2012) Effects of antibiotic on bacterial flora in fish culture ponds. M.Sc. Thesis., p.22-31. Department of Fisheries Technology. BAU, Mymensingh, BangladeshGoogle Scholar
  4. 4.
    Banerjee G, Ray AK (2017) The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77. CrossRefGoogle Scholar
  5. 5.
    FAO/WHO (2002) Food and agriculture organization of the united and world health organization. Guidelines for the evaluation of probiotics in food, 2002.Disponívelem: < en/probiotic_guidelines.pdf>
  6. 6.
    Balcázar JL, Rojas-Luna T, Cunningham DP (2007) Effect of the addition of four potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. J Invertebr Pathol 96(2):147–150. CrossRefGoogle Scholar
  7. 7.
    Jamali H, Imani A, Abdollahi D, Roozbehfar R, Isari A (2015) Use of probiotic Bacillus spp. in rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) enrichment: effects on growth and survival of Pacific white shrimp, Litopenaeus vannamei, larvae. Probiots Antimicro Prot 7(2):118–125. CrossRefGoogle Scholar
  8. 8.
    Pourgholam MA, Khara H, Safari R, Sadati MAY Aramli MS (2017) Hemato-immunological responses and disease resistance in Siberian sturgeon Acipenser baerii fed on a supplemented diet of Lactobacillus plantarum. Probiots Antimicro Prot 9(1):32–40. CrossRefGoogle Scholar
  9. 9.
    Azarin H, Aramli MS, Imanpour MR, Rajabpour M (2015) Effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis and ferroin solution on growth performance, body composition and haematological parameters in Kutum (Rutilus frisii kutum) Fry. Probiots Antimicro Prot 7(1):31–37. CrossRefGoogle Scholar
  10. 10.
    Nandi A, Banerjee G, Dan SK, Ghosh K,Ray AK (2017) Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739. Probiots Antimicro Prot 1-8.doi:
  11. 11.
    Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. CrossRefGoogle Scholar
  12. 12.
    Durkee DL (2010) Coming out of the dairy case: new developments in shelf stable probiotic food.
  13. 13.
    Bandyopadhyay P, Mohapatra PKD (2009) Effect of a probiotic bacterium Bacillus circulans PB7 in the formulated diets: on growth, nutritional quality and immunity of Catlacatla (Ham.) Fish Physiol Biochem 35(3):467–478. CrossRefGoogle Scholar
  14. 14.
    El-Dakar AY, Shalaby SM, Saoud IP (2007) Assessing the use of a dietary probiotic/prebiotic as an enhancer of spine foot rabbit fish Siganus rivulatus survival and growth. Aquac Nutr 13(6):407–412. CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z (2012) Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 32(5):750–755. CrossRefGoogle Scholar
  16. 16.
    Nikoskelainen S, Ouwehand AC, Bylund G, Salminen S, Lilius EM (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15(5):443–452. CrossRefGoogle Scholar
  17. 17.
    AOAC (1997) Official methods of analysis. Association of official analytical chemists, Washington, DC, pp 16–17 (Chapter 16) Google Scholar
  18. 18.
    Sarder MR, Thompson KD, Penman DJ, McAndrew BJ (2001) Immune response of the Nile tilapia (Oreochromis niloticus L.) clones, 1. Non-specific responses. Dev Comp Immunol 25(1):37–46. CrossRefGoogle Scholar
  19. 19.
    Brown BA (1988) Routine hematology procedures. In: Brown BA (ed) Hematology, principles and procedures. Philadelphia. PA.USA, Leo and Febiger, pp 7–122Google Scholar
  20. 20.
    Blaxhall PC, Daisley KW (1973) Routine haematological methods for use with fish blood. J Fish Biol 5(6):771–781. CrossRefGoogle Scholar
  21. 21.
    Parry RM, Chandan RC, Shahani KM (1965) A rapid and sensitive assay of muramidase. Experim Biol Med 119(2):384–386. CrossRefGoogle Scholar
  22. 22.
    Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63. CrossRefGoogle Scholar
  23. 23.
    Principato GB, Asia MC, Talesa V, Rosi G, Giovannini E (1985) Characterization of the soluble alkaline phosphatase from hepatopancreas of Squilla mantis L. Com Biochem Physiol 80(4):801–804. Google Scholar
  24. 24.
    Lemieux H, Blier P, Dutil JD (1999) Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiol Biochem 20(4): 293–303.
  25. 25.
    Chong ASC, Hashim R, Chow-Yang L, Ali AB (2002) Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture 203(3–4):321–333. CrossRefGoogle Scholar
  26. 26.
    Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol. V. Verlag Chemie, Weinheim, pp 270–277Google Scholar
  27. 27.
    Robyt JF, Whelan WJ (1968) The β-amylases. In: Radley JA (ed) Starch and its derivates. Academic press, London, pp 477–497Google Scholar
  28. 28.
    Bier M (1955) Lipases. Methods in enzymology I. Academic Press, New York, pp. 627–642.Google Scholar
  29. 29.
    Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14. CrossRefGoogle Scholar
  30. 30.
    Nya EJ, Austin B (2009) Use of dietary ginger, Zingiber officinale Roscoe, as animmunostimulant to control Aeromonas hydrophila infections in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 32(11):971–977. CrossRefGoogle Scholar
  31. 31.
    Talpur AD, Ikhwanuddin M (2012) Dietary effects of garlic (Allium sativum) on haemato-immunological parameters, survival, growth, and disease resistance against Vibrio harveyi infection in Asian sea bass, Lates calcarifer (Bloch). Aquaculture 364–365:6–12. CrossRefGoogle Scholar
  32. 32.
    Talpur AD, Ikhwanuddin M (2013) Azadirachta indica (neem) leaf dietary effects on the immunity response and disease resistance of Asian seabass, Lates calcarifer challenged with Vibrio harveyi. Fish Shellfish Immunol 34(1):254–264. CrossRefGoogle Scholar
  33. 33.
    Misra CK, Das BK, Mukherjee SC, Pattnaik P (2006) Effect of long term administration of dietary b-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture 255(1-4):82–94. CrossRefGoogle Scholar
  34. 34.
    Silva RD, Rocha LO, Fortes BDA, Vieira D, Fioravanti MCS (2012) Parâmetros hematológicos e bioquímicos da tilápia-do-Nilo (Oreochromis niloticus L.) sob estresse por exposição ao ar. Pesq Vet Bras 32(suppl 1):99–107. CrossRefGoogle Scholar
  35. 35.
    Falcon DR, Barros MM, Pezzato LE, Solarte WVN, Guimarães IG (2008) Leucograma da tilápia-do-Nilo arraçoada com dietas suplementadas com níveis de vitamina C e lipídeo submetida a estresse por baixa temperatura. Ciên Anim Brasil 9:543–551Google Scholar
  36. 36.
    Tavares-Dias M, Moraes FR (2004) Hematologia de peixes teleósteos. Villimpress Ribeirão Preto, p 144Google Scholar
  37. 37.
    Lie O, Syed M, Solbu H (1986) Improved agar plate assays of bovine lysozyme and haemolytic complement activity. Acta Vet Scand 27(1):23–32Google Scholar
  38. 38.
    Jolle’s P, Jolle’s J (1984) What’s new in lysozyme research. Mol Cell Biochem 63(2):165–189. Google Scholar
  39. 39.
    Takemura A, Takano K (1995) Lysozyme in the ovary of tilapia (Oreochromis mossambicus): its purification and some biological properties. Fish Physiol Biochem 14(5):415–521. CrossRefGoogle Scholar
  40. 40.
    Paulsen SM, Engstad RE, Robertsen B (2001) Enhanced lysozyme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeast glucan and bacterial lipopolysaccharide. Fish Shellfish Immuno 11(1):23–37. CrossRefGoogle Scholar
  41. 41.
    Paulsen SM, Lunde H, Engstad RE, Robertsen B (2003) In vivo effects of glucan and LPS on regulation of lysozyme activity and mRNA expression in Atlantic salmon (Salmo salar). Fish Shellfish Immunol 14(1):39–54. CrossRefGoogle Scholar
  42. 42.
    Sun YZ, Yang HL, Ma RL, Lin WY (2010) Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29(5):803–809. CrossRefGoogle Scholar
  43. 43.
    Aly SM, Ahmed YAG, Ghareeb AAA, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shell fish Immunol 25(1-2):128–136. CrossRefGoogle Scholar
  44. 44.
    Wang GX, Liu YT, Li FY, Gao HT, Lei Y, Liu XL (2010) Immunostimulatory activities of Bacillus simplex DR-834 to carp (Cyprinus carpio). Fish Shellfish Immunol 29(3):278–287. CrossRefGoogle Scholar
  45. 45.
    Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci 101(13):596–601. CrossRefGoogle Scholar
  46. 46.
    Qi Z, Zhang XH, Boon N, Bossier P (2009) Probiotics in aquaculture of China e current state, problems and prospect. Aquaculture 290(1-2):15–21. CrossRefGoogle Scholar
  47. 47.
    Scapigliati G, Romano N, Abelli L, Meloni S, Ficca AG, Buonocore F, Bird S, Secombes CJ (2000) Immunopurification of T-cells from sea bass Dicentrarchus labrax (L.) Fish Shellfish Immunol 10(4):329–341. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication May/2018

Authors and Affiliations

  • Taida Juliana Adorian
    • 1
  • Hadi Jamali
    • 2
    Email author
  • Hamed Ghafari Farsani
    • 3
  • Paria Darvishi
    • 4
  • Soleiman Hasanpour
    • 2
  • Tahereh Bagheri
    • 5
  • Reza Roozbehfar
    • 6
  1. 1.Laboratory of Fisheries, Department of Animal ScienceFederal University of Santa MariaSanta MariaBrazil
  2. 2.Young Researchers and Elite Club, Urmia BranchIslamic Azad UniversityUrmiaIran
  3. 3.Young Researchers and Elite Club, Shahrekord BranchIslamic Azad UniversityShahrekordIran
  4. 4.Department of Fisheries, College of Natural resourcesUniversity of TehranKarajIran
  5. 5.Offshore Fisheries Research Center, Iranian Fisheries Science Research InstituteAgricultural Research Education and Extension OrganizationChabaharIran
  6. 6.Department of FisheriesKhorramshahr University of Marine Science and TechnologyKhorramshahrIran

Personalised recommendations