Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 85–91 | Cite as

Investigation of Lactic Acid Bacteria Isolated from Giant Panda Feces for Potential Probiotics In Vitro

  • Qian Liu
  • Xueqin Ni
  • Qiang Wang
  • Zhirong Peng
  • Lili Niu
  • Meiling Xie
  • Yicen Lin
  • Yi Zhou
  • Hao Sun
  • Kangcheng Pan
  • Bo Jing
  • Dong ZengEmail author


The present study aimed to isolate an optimal lactic acid bacterial strain from the feces of healthy giant pandas. The strain exhibited good stability at low pH and high bile salt concentrations, activity against pathogens relevant to pandas, and antibiotic susceptibility. In the current study, 25 isolates were obtained from de Man, Rogosa, and Sharpe agar. Two (E21 and G83) and eight (E1, E2, E16, E18, E21, E69, E70, and G83) isolates demonstrated good performance at pH 2.0 and bile 2% (w/v), respectively. Three isolates (G83, G88, and G90) possessed better antimicrobial effect on enterotoxigenic Escherichia coli CVCC196 (ETEC) than the rest. One isolate (G83) strongly affected Salmonella, whereas three (G83, G87, and G88) exhibited inhibitory activity against Staphylococcus aureus. All isolates were multi-drug resistant. These isolates were identified as Lactobacillus (5 isolates) and Enterococcus (20 isolates) by 16S rRNA sequencing. Virulence genes were detected in Enterococcus isolates. Isolate G83 was identified as Lactobacillus plantarum and was considered as the best probiotic candidate among all of the experimental isolates. This study provided necessary and important theoretical guidance for further experiments on G83 in vivo.


Giant panda Probiotic Lactic acid bacteria Isolation 


Funding Information

The present study was supported by the National Natural Science Foundation of China (31672318) and the Funded Project of Chengdu Giant Panda Breeding Research Foundation (CPF2014-15, CPF2015-06).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Geier MS, Mikkelsen LL, Torok VA, Allison GE, Olnood CG, Boulianne M, Hughes RJ, Choct M (2010) Comparison of alternatives to in-feed antimicrobials for the prevention of clinical necrotic enteritis. J Appl Microbiol 109(4):1329–1338. CrossRefGoogle Scholar
  2. 2.
    Archambaud C, Nahori MA, Soubigou G, Bécavin C, Laval L, Lechat P, Smokvina T, Langella P, Lecuit M, Cossart P (2012) Impact of lactobacilli on orally acquired listeriosis. Proc Natl Acad Sci 109(41):16684–16689. CrossRefGoogle Scholar
  3. 3.
    Yu Q, Yuan L, Deng J, Qian Y (2015) Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol 5:26. CrossRefGoogle Scholar
  4. 4.
    Zhou Z, Zhou X, Zhong Z, Wang C, Zhang H, Li D, He T, Li C, Liu X, Yuan H (2014) Investigation of antibacterial activity of Bacillus spp. isolated from the feces of Giant Panda and characterization of their antimicrobial gene distributions. World J Microbiol Biotechnol 30(12):3129–3136. CrossRefGoogle Scholar
  5. 5.
    Wu C, Wu L, Zhang L, Gelbič I, Xu L, Guan X (2014) Characterization of eight Bacillus thuringiensis isolates originated from fecal samples of Fuzhou Zoo and Fuzhou Panda Center. J Asia Pac Entomol 17(3):395–397. CrossRefGoogle Scholar
  6. 6.
    Chen F, Shuang L, Cheng L, Shuang M, Li Z, Qi W (2012) Isolation, identification and cellulase production of a cellulolytic bacterium from intestines of giant panda (in Chinese). Acta Microbiol Sin 52(9):1113–1121 (樊程, 李双江, 李成磊, 马双, 邹立扣, 吴琦 (2012) 大熊猫肠道纤维素分解菌的分离鉴定及产酶性质. 微生物学报 52 (9):1113-1121)Google Scholar
  7. 7.
    Peng Z, Dong Z, Qiang W, Niu L, Ni X, Zou F, Yang M, Hao S, Yi Z, Qian L (2016) Decreased microbial diversity and Lactobacillus group in the intestine of geriatric giant pandas (Ailuropoda melanoleuca). World J Microbiol Biotechnol 32(5):79. CrossRefGoogle Scholar
  8. 8.
    Chen X, Yin M, Wang X, Pu Z, Ma Y, Chen Z (2015). Isolation and preliminary identification of intestinal pathogens of captive giant panda (In Chinese). J Mianyang Normal Univ (2):1–7. (陈希文, 尹苗, 王雄清, 蒲中慧, 马缨, 陈紫娟 (2015) 圈养大熊猫肠道致病菌的分离与初步鉴定. 绵阳师范学院学报 (2):1–7).
  9. 9.
    Fei S, Jing L, Dan X, Wan W, Geng G, Ning F, Shui Y (2002) Pathogens of intestinal disease in giant panda (in Chinese). J Economic Animal 6(2):20–23 (孙飞龙, 刘敬贤, 席丹, 王万云, 高更更, 冯宁, 杨水云 (2002) 大熊猫肠道疾病致病菌. 经济动物学报 6 (2):20-23). Google Scholar
  10. 10.
    Fontana C, Cocconcelli PS, Vignolo G, Saavedra L (2015) Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control 47:53–59. CrossRefGoogle Scholar
  11. 11.
    Ghosh K, Ray M, Adak A, Halder SK, Das A, Jana A, Parua S, Vágvölgyi C, Mohapatra PKD, Pati BR (2015) Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresour Technol 188:161–168. CrossRefGoogle Scholar
  12. 12.
    Cockerill FR (2013) Performance standards for antimicrobial susceptibility testing : twenty-first informational supplement. Clinical and Laboratory Standards InstituteGoogle Scholar
  13. 13.
    Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67(4):1628–1635. CrossRefGoogle Scholar
  14. 14.
    Bellomo G, Mangiagle A, Nicastro L, Frigerio G (1980) A controlled double-blind study of SF68 strain as a new biological preparation for the treatment of diarrhoea in pediatrics. Curr Ther Res Clin 28(6):927–936Google Scholar
  15. 15.
    Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS (1999) Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67(1):193–200Google Scholar
  16. 16.
    Su YA, Sulavik MC, He P, Makinen KK, Makinen PL, Fiedler S, Wirth R, Clewell DB (1991) Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 59(1):415–420Google Scholar
  17. 17.
    Gilmore MS, Segarra RA, Booth MC, Bogie CP, Hall LR, Clewell DB (1994) Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol 176(23):7335–7344. CrossRefGoogle Scholar
  18. 18.
    Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Duprè I, Sechi LA (2003) Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int J Food Microbiol 88(2):291–304. CrossRefGoogle Scholar
  19. 19.
    Barbavidal E, Castillejos L, Lópezcolom P, Rivero UM, Moreno Muñoz JA, Martínorúe SM (2017) Evaluation of the probiotic strain Bifidobacterium longum subsp. Infantis CECT 7210 capacities to improve health status and fight digestive pathogens in a piglet model. Front Microbiol 8:533. Google Scholar
  20. 20.
    Nishida S, Ishii M, Nishiyama Y, Abe S, Ono Y, Sekimizu K (2017) Lactobacillus paraplantarum 11-1 isolated from rice bran pickles activated innate immunity and improved survival in a silkworm bacterial infection model. Front Microbiol 8:436. CrossRefGoogle Scholar
  21. 21.
    Wu Y, Wang Y, Zhou H, Wang B, Sun Q, Fu A, Wang Y, Wang Y, Xu X, Li W (2017) Probiotic Bacillus amyloliquefaciens SC06 induces autophagy to protect against pathogens in macrophages. Front Microbiol 8:469. Google Scholar
  22. 22.
    Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7(9):503–514. CrossRefGoogle Scholar
  23. 23.
    Yadav R, Puniya AK, Shukla P (2016) Probiotic properties of Lactobacillus plantarum RYPR1 from an indigenous fermented beverage Raabadi. Front Microbiol 7:1683. Google Scholar
  24. 24.
    Havenaar R, Brink BT, Veld JHJHI (1992) Selection of strains for probiotic use. Springer Netherlands:209–224.
  25. 25.
    Klopper KB, Deane SM, Lmt D (2017) Aciduric strains of Lactobacillus reuteri and Lactobacillus rhamnosus, isolated from human feces, have strong adhesion and aggregation properties. Probiotics Antimicro 2:1–9. Google Scholar
  26. 26.
    Beasley SS, Manninen TJK, Saris PEJ (2006) Lactic acid bacteria isolated from canine faeces. J Appl Microbiol 101(1):131–138. CrossRefGoogle Scholar
  27. 27.
    Blazenka K, Jagoda Š, Jasna B, Krešimir G, Jadranka F, Carlo I, Francesco C (2008) Characterization of the three selected probiotic strains for the application in food industry. World J Microbiol Biotechnol 24(5):699–707CrossRefGoogle Scholar
  28. 28.
    Verso LL, Lessard M, Talbot G, Fernandez B, Fliss I (2017) Isolation and selection of potential probiotic bacteria from the pig gastrointestinal tract. Probiotics Antimicro 5:1–14. Google Scholar
  29. 29.
    Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R (2016) Antibiotic resistance of Lactobacillus sp. isolated from commercial probiotic preparations. J Food Saf 36(1):38–51. CrossRefGoogle Scholar
  30. 30.
    Egervärn M, Lindmark H, Olsson J, Roos S (2010) Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans. Anton Leeuw Int J G 97(2):189–200. CrossRefGoogle Scholar
  31. 31.
    Korhonen JM, Hoek AHAMV, Saarela M, Huys G, Tosi L, Mayrhofer S, Wright AV (2010) Antimicrobial susceptibility of Lactobacillus rhamnosus. Benefic Microbes 1(1):75–80. CrossRefGoogle Scholar
  32. 32.
    Colombo M, Castilho NP, Todorov SD, Nero LA (2017) Beneficial and safety properties of a Corynebacterium vitaeruminis strain isolated from the cow rumen. Probiotics Antimicro 9(2):157–162. CrossRefGoogle Scholar
  33. 33.
    Barton MD (2000) Antibiotics or probiotics: reducing antibiotic resistance. J Magn Reson Imaging 13:352–355Google Scholar
  34. 34.
    Franz CMAP, Melanie H, Hikmate A, Wilhelm H, Antonio G (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151(2):125–140. CrossRefGoogle Scholar
  35. 35.
    Kreuzer S, Machnowska P, Aßmus J, Sieber M, Pieper R, Schmidt MF, Brockmann GA, Scharek-Tedin L, Johne R (2012) Feeding of the probiotic bacterium Enterococcus faecium NCIMB 10415 differentially affects shedding of enteric viruses in pigs. Vet Res 43(1):95–96. CrossRefGoogle Scholar
  36. 36.
    Hunt CP (1998) The emergence of enterococci as a cause of nosocomial infection. Brit J Biomed Sci 55(2):149–156Google Scholar
  37. 37.
    Jett BD, Huycke MM, Gilmore MS (1994) Virulence of enterococci. Clin Microbiol Rev 7(4):462–478. CrossRefGoogle Scholar
  38. 38.
    Lee K, Lee M, Lee Y (2008) Safety assessment of commercial Enterococcus probiotics in Korea. J Microbiol Biotechnol 18(5):942–945Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Animal Microecology Institute, College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
  2. 2.Chengdu Wildlife Institute, Chengdu ZooChengduChina
  3. 3.Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengduChina

Personalised recommendations