Probiotics and Antimicrobial Proteins

, Volume 10, Issue 2, pp 157–167 | Cite as

Study and Understanding Behavior of Alginate-Inulin Synbiotics Beads for Protection and Delivery of Antimicrobial-Producing Probiotics in Colonic Simulated Conditions

  • Abdelbasset Atia
  • Ahmed Gomaa
  • Benoit Fernandez
  • Muriel Subirade
  • Ismail Fliss


According to the World Health Organization (WHO), using antibiotics as growth promoters for livestock—particularly swine—is the principal cause of antibiotic resistance. It is therefore clear that finding an alternative to antibiotics becomes an emergency. Hundreds of recent studies have appointed probiotics as potential candidates to replace or to be used in combination with antibiotics. However, bringing probiotics alive to the colon—their site of action—remains a big challenge because of different physiological barriers encountered in proximal gastrointestinal tract (GIT) such as acidic pH and bile salts that may affect the viability of probiotic cultures. To overcome this problem, in previous studies, we developed and characterize a synbiotic formula consisting of beads of a mixture of alginate and inulin. Three potential probiotics strains namely Pediococcus acidilactici UL5 (UL5), Lactobacillus reuteri (LR), and Lactobacillus salivarius (LS) were encapsulated to study their release and the behavior of this synbiotic formula throughout the GIT using in vitro models. The survival and the release of bacteria from beads were studied by specific PMA-qPCR counting. The microscopic aspects of the beads were studied using scanning electron microscopy (SEM). Moreover, the microbial dynamics inside beads were studied by fluorescence microscopy using the live/dead test. Our results have shown that the beads containing 5% inulin were the most stable in the stomach and throughout the small intestine. However, beads were completely degraded in approximately 3 h of incubation in the fermented medium that mimic the colon. These results were confirmed by SEM and fluorescence microscopy images. Therefore, it can be stated that the AI5 formulation well protected the bacteria in the upper part of the digestive tract and allowed their controlled release in the colon.


Colonic delivery Colonic behavior Inulin-alginate beads prebiotics probiotics 



The authors would like to thank Ms. Diane Gagnon (Institut de recherche sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC, Canada) and Richard Janvier (Plateforme de microscopie, l’Université Laval).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Perumal OP, Haywood A, Glass B, Ho PC-L (2011) Pharmacokinetics and biopharmaceutics. In: Pharmaceutical Science and Technology, Garg, Sanj. Pharmaceutical Press, London, pp 41–86Google Scholar
  2. 2.
    Panchagnula R, Thomas NS (2000) Biopharmaceutics and pharmacokinetics in drug research. Int J Pharm 201(2):131–150. CrossRefPubMedGoogle Scholar
  3. 3.
    Sheftell FD, Dahlöf CGH, Brandes JL, Agosti R, Jones MW, Barrett PS (2005) Two replicate randomized, double-blind, placebo-controlled trials of the time to onset of pain relief in the acute treatment of migraine with a fast-disintegrating/rapid-release formulation of sumatriptan tablets. Clin Ther 27(4):407–417. CrossRefPubMedGoogle Scholar
  4. 4.
    Tahara K, Yamamoto K, Nishihata T (1995) Overall mechanism behind matrix sustained release (SR) tablets prepared with hydroxypropyl methylcellulose 2910. J Control Release 35(1):59–66. CrossRefGoogle Scholar
  5. 5.
    Philip AK, Philip B (2010) Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 25(2):79CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stella VJ, Rao VM, Zannou EA, Zia V (1999) Mechanisms of drug release from cyclodextrin complexes. Adv Drug Deliv Rev 36(1):3–16. CrossRefPubMedGoogle Scholar
  7. 7.
    Metz DC, Vakily M, Dixit T, Mulford D (2009) Review article: dual delayed release formulation of dexlansoprazole MR, a novel approach to overcome the limitations of conventional single release proton pump inhibitor therapy. Aliment Pharmacol Ther 29(9):928–937. CrossRefPubMedGoogle Scholar
  8. 8.
    BOURLIOUX P, Corthier G, Gobert J-G, Butel M-J (2014) Pourquoi la flore intestinale a-t-elle vocation à devenir médicament ? Ann Pharm Fr 72(5):325–329. CrossRefPubMedGoogle Scholar
  9. 9.
    Calenge F, Martin C, Floch NLE, Phocas F, Morgavi D, Sup V, Ouest A (2014) Intégrer la caractérisation du microbiote digestif dans le phénotypage de l ’ animal de rente : vers un nouvel outil de maîtrise de la santé en élevage ? INRA Prod Anim 27(3):209–222Google Scholar
  10. 10.
    Castillo M, Martín-Orúe SM, Nofrarías M, Manzanilla EG, Gasa J (2007) Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet Microbiol 124(3-4):239–247. CrossRefPubMedGoogle Scholar
  11. 11.
    Le Lay C (2015) UL719 et la nisine : une nouvelle approche dans le traitement des infections à Clostridium difficile Lactococcus lactis ssp . lactis biovar . diacetylactis UL719 et la nisine : une nouvelle approche dans le traitement des infections à Clostridium difficil. Laval UniversityGoogle Scholar
  12. 12.
    WHO and FAO(2001) Probiotics in food FOOD AND NUTRITION. Food and Nutrition Paper.Google Scholar
  13. 13.
    Gobinath D, Prapulla SG (2014) Permeabilized probiotic lactobacillus plantarum as a source of β-galactosidase for the synthesis of prebiotic galactooligosaccharides. Biotechnol Lett 36(1):153–157. CrossRefPubMedGoogle Scholar
  14. 14.
    Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (Aug. 2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67. CrossRefPubMedGoogle Scholar
  15. 15.
    Gbassi GK, Atheba P, Yolou FS, Vandamme T (2013) Macrobeads based-polysaccharides: development and morphological analysis. World Appl Sci J 22(5):732–737Google Scholar
  16. 16.
    Gbassi GK (2010) Aspects physicochimiques de l’encapsulation et de la désencapsulation des probiotiques.Google Scholar
  17. 17.
    Sathyabama S, Ranjith Kumar M, Bruntha Devi P, Vijayabharathi R, Brindha Priyadharisini V (2014) Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT Food Sci Technol 57(1):419–425. CrossRefGoogle Scholar
  18. 18.
    Pimentel TC, Madrona GS, Garcia S, Prudencio SH (2015) Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT Food Sci Technol 63(1):415–422. CrossRefGoogle Scholar
  19. 19.
    Arief II, Wulandari Z, Aditia EL, Baihaqi M (2014) Physicochemical and microbiological properties of fermented lamb sausages using probiotic lactobacillus plantarum IIA-2C12 as starter culture. Procedia Environ Sci 20:352–356. CrossRefGoogle Scholar
  20. 20.
    Alegre I, Viñas I, Usall J, Anguera M, Abadias M (Feb. 2011) Microbiological and physicochemical quality of fresh-cut apple enriched with the probiotic strain lactobacillus rhamnosus GG. Food Microbiol 28(1):59–66. CrossRefPubMedGoogle Scholar
  21. 21.
    Havenaar R, Anneveld B, Hanff LM, de Wildt SN, de Koning BAE, Mooij MG, Lelieveld JPA, Minekus M (2013) In vitro gastrointestinal model (TIM) with predictive power, even for infants and children? Int J Pharm 457(1):327–332CrossRefPubMedGoogle Scholar
  22. 22.
    Havenaar R, Bellmann S, Zeijdner E (2014) Dynamic gastro-intestinal in vitro model (TIM) for reliable prediction of stability, availability for absorption, and luminal efficacy of clinical foods and ingredients. Pharm Nutr 2(3):85–86. CrossRefGoogle Scholar
  23. 23.
    Atia A, Gomaa A, Fliss I, Beyssac E, Garrait G, Subirade M (2016) A prebiotic matrix for encapsulation of probiotics: physicochemical and microbiological study. J Microencapsul:1–13Google Scholar
  24. 24.
    Blaser M, Bork P, Fraser C, Knight R, Wang J (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11(3):213–217. CrossRefPubMedGoogle Scholar
  25. 25.
    Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136(3):337–356. CrossRefPubMedGoogle Scholar
  26. 26.
    Heavens D, Tailford LE, Crossman L, Jeffers F, MacKenzie DA, Caccamo M, Juge N (2011) Genome sequence of the vertebrate gut symbiont lactobacillus reuteri ATCC 53608. J Bacteriol 193(15):4015–4016. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Daba H, Lacroix C, Huang J, Simard RE, Lemieux L (1994) Simple method of purification and sequencing of a bacteriocin produced by Pediococcus acidilactici UL5. J Appl Bacteriol 77(6):682–688. CrossRefPubMedGoogle Scholar
  28. 28.
    Lo Verso L, Lessard M, Talbot G, Subirade M, and Fliss I (2013) Isolation and antibacterial activity of potential probiotic bacteria from pig gastrointestinal tract. In 6th Symposium of Swine and Poultry Infectious Diseases Research Center. Congrès de l’ACFAS Colloque 227 –le microbiote animal : une question d’équilibre. p 45Google Scholar
  29. 29.
    Smrdel P, Bogataj M, Mrhar A (2008) The influence of selected parameters on the size and shape of alginate beads prepared by ionotropic gelation. Scientia Pharmaceutica 76(1):77CrossRefGoogle Scholar
  30. 30.
    Gao Z (2009) In vitro dissolution testing with flow-through method: a technical note. AAPS Pharm Sci Tech 10(4):1401–1405CrossRefGoogle Scholar
  31. 31.
    Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35(2):180–187. CrossRefPubMedGoogle Scholar
  32. 32.
    Tanner SA, Zihler Berner A, Rigozzi E, Grattepanche F, Chassard C, Lacroix C (2014) In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PloS One 9(4):e94123CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Le Lay C, Fernandez B, Hammami R, Ouellette M, Fliss I (2015) On Lactococcus lactis UL719 competitivity and nisin (Nisaplin(®)) capacity to inhibit Clostridium Difficile in a model of human colon. Front Microbiol 6:1020. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Häuselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block, Aydelotte MB, Kuettner KE, Thonar EJ (Jan. 1994) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107:17–27PubMedGoogle Scholar
  35. 35.
    Fernandez B (2014) Activité biologique et impact sur le microbiote intestinal des bactéries lactiques bactériocinogènes. Collection des thèses et mémoires électroniques de l’Université LavalGoogle Scholar
  36. 36.
    Josefsen MH, Löfström C, Hansen TB, Christensen LS, Olsen JE, Hoorfar J (2010) Rapid quantification of viable campylobacter bacteria on chicken carcasses, using real-time PCR and propidium monoazide treatment, as a tool for quantitative risk assessment. Appl Environ Microbiol 76(15):5097–5104. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fernandez B, Savard P, Fliss I (2015) Survival and metabolic activity of Pediocin producer Pediococcus acidilactici UL5: its impact on intestinal microbiota and listeria monocytogenes in a model of the human terminal ileum. Microb Ecol 72(4):931–942. CrossRefPubMedGoogle Scholar
  38. 38.
    Mora D, Fortina MG, Parini C, Manachini PL (2006) Identification of Pediococcus acidilactici and Pediococcus pentosaceus based on 16S rRNA and ldhD gene-targeted multiplex PCR analysis. FEMS Microbiol Lett 151(2):231–236. CrossRefGoogle Scholar
  39. 39.
    Harrow SA, Ravindran V, Butler RC, Marshall JW, Tannock GW (2007) Real-time quantitative PCR measurement of ileal lactobacillus salivarius populations from broiler chickens to determine the influence of farming practices. Appl Environ Microbiol 73(22):7123–7127. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int JJ Obes (2005) 36(6):817–825. CrossRefGoogle Scholar
  41. 41.
    Molecular Probes (2001) LIVE/DEAD BacLight bacterial viability kits. Manuals and Product Inserts. [Online]. Available: Accessed 21 Sep 2015
  42. 42.
    Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I (2009) Vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting listeria monocytogenes. Int J Food Microbiol 133(3):225–233. CrossRefPubMedGoogle Scholar
  43. 43.
    Fernandez B, Hammami R, Savard P, Jean J, Fliss I (2014) Pediococcus acidilactici UL5 and Lactococcus lactis ATCC 11454 are able to survive and express their bacteriocin genes under simulated gastrointestinal conditions. J Appl Microbiol 116(3):677–688. CrossRefPubMedGoogle Scholar
  44. 44.
    Atia A, Gomma AI, Fliss I, Beyssac E, Garrait G, and Subirade M (2017) Molecular and biopharmaceutical investigation of alginate–inulin synbiotic coencapsulation of probiotic to target the colon. J Microencapsul 1–13Google Scholar
  45. 45.
    Kim M, Wuertz S (2015) Survival and persistence of host-associated Bacteroidales cells and DNA in comparison with Escherichia Coli and enterococcus in freshwater sediments as quantified by PMA-qPCR and qPCR. Water Res 87:182–192. CrossRefPubMedGoogle Scholar
  46. 46.
    Truchado P, Gil MI, Kostic T, Allende A (2016) Optimization and validation of a PMA qPCR method for Escherichia Coli quantification in primary production. Food Control 62:150–156. CrossRefGoogle Scholar
  47. 47.
    Atia A, Gomaa A, I Fliss, Beyssac E, Garrait G, and Subirade M (2016) Prebiotic matrix for encapsulation of probiotics: biopharmaceutical study of a controlled release formulation targeting colon. Eur J Pharm BiopharmGoogle Scholar
  48. 48.
    Kauffman JS (2005) Qualification and validation of USP apparatus 4. Dissolut Technol 12:41–43CrossRefGoogle Scholar
  49. 49.
    Beyssac E, Lavigne J (2005) Dissolution study of active pharmaceutical ingredients using the flow through apparatus USP 4. Dissolut Technol 12(2):23–25. CrossRefGoogle Scholar
  50. 50.
    Marles RJ, Barrett ML, Barnes J, Chavez ML, Gardiner P, Ko R, Mahady GB, Low Dog T, Sarma ND, Giancaspro GI, Sharaf M, Griffiths J (2011) United States pharmacopeia safety evaluation of spirulina. Crit Rev Food Sci Nutr 51(7):593–604. CrossRefPubMedGoogle Scholar
  51. 51.
    Damitz R, Chauhan A (2015) Rapid dissolution of propofol emulsions under sink conditions. Int J Pharm 481(1–2):47–55. CrossRefPubMedGoogle Scholar
  52. 52.
    Seidlitz A, Nagel S, Semmling B, Grabow N, Martin H, Senz V, Harder C, Sternberg K, Schmitz K-P, Kroemer HK, Weitschies W (2011) Examination of drug release and distribution from drug-eluting stents with a vessel-simulating flow-through cell. Eur J Pharm Biopharm 78(1):36–48. CrossRefPubMedGoogle Scholar
  53. 53.
    Scheubel E (2010) Predictive in vitro dissolution tools : application during formulation development. Université d’Auvergne - Clermont-Ferrand IGoogle Scholar
  54. 54.
    Xie X, Cardot J-M, Garrait G, Thery V, El-Hajji M, Beyssac E (2014) Micelle dynamic simulation and physicochemical characterization of biorelevant media to reflect gastrointestinal environment in fasted and fed states. Eur J Pharm Biopharm 88(2):565–573. CrossRefPubMedGoogle Scholar
  55. 55.
    Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M, Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie A, Marze S, McClements DJ, Ménard O, Recio I, Santos CN, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Brodkorb A (2014) A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct 5(6):1113–1124. CrossRefPubMedGoogle Scholar
  56. 56.
    Stefanelli M, Vichi S, Stipa G, Funari E, Testai E, Scardala S, Manganelli M (2014) Survival, growth and toxicity of Microcystis Aeruginosa PCC 7806 in experimental conditions mimicking some features of the human gastro-intestinal environment. Chem Biol Interact 215:54–61. CrossRefPubMedGoogle Scholar
  57. 57.
    Naeem M, Kim W, Cao J, Jung Y, Yoo J-W (2014) Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids Surf B: Biointerfaces 123:271–278. CrossRefPubMedGoogle Scholar
  58. 58.
    Campos-Vega R, Vázquez-Sánchez K, López-Barrera D, Loarca-Piña G, Mendoza-Díaz S, Oomah BD (2015) Simulated gastrointestinal digestion and in vitro colonic fermentation of spent coffee (Coffea Arabica L.): bioaccessibility and intestinal permeability. Food Res Int 77:156–161. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Abdelbasset Atia
    • 1
    • 2
    • 3
  • Ahmed Gomaa
    • 1
    • 2
    • 4
  • Benoit Fernandez
    • 1
    • 2
  • Muriel Subirade
    • 1
    • 2
  • Ismail Fliss
    • 1
    • 2
  1. 1.Department of Food ScienceQuébecCanada
  2. 2.Institute of Nutrition and Functional Foods (INAF)Université LavalQuébecCanada
  3. 3.Biena | Probiotics and Lactic CulturesSaint-HyacintheCanada
  4. 4.Food Science and Nutrition DepartmentNational Research CenterCairoEgypt

Personalised recommendations