Advertisement

Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 264–272 | Cite as

Probiotic and Synbiotic Sorbets Produced with Jussara (Euterpe edulis) Pulp: Evaluation Throughout the Storage Period and Effect of the Matrix on Probiotics Exposed to Simulated Gastrointestinal Fluids

  • Júlia Fernanda Urbano Marinho
  • Marluci Palazzolli da Silva
  • Marcella Chalella Mazzocato
  • Fabrício Luiz Tulini
  • Carmen Sílvia Favaro-TrindadeEmail author
Article

Abstract

The aims of the present study were to develop and evaluate different formulations of probiotic and synbiotic sorbets produced with jussara (Euterpe edulis) pulp, polydextrose, Lactobacillus acidophilus LA3, and Lactobacillus paracasei BGP1. The pasteurized jussara pulp presented high content of phenolic compounds, especially anthocyanins, which were not inhibitory to the probiotics used in this study. The levels of polyphenols and anthocyanins present in the sorbets were also high and kept stable for 120 days, as well as the populations of both probiotics. On the other hand, probiotic populations reduced ca. 4 log CFU/g when exposed to simulated gastrointestinal fluids. Altogether, the sorbets produced in this study showed interesting results, indicating the viability on producing functional foods with probiotics, prebiotics, and other components that are rich in polyphenols, such as jussara pulp. The combination of these elements can improve the health beneficial effects of these compounds and provide important advantages to the intestinal microbiota of consumers.

Keywords

Functional food Lactobacillus Polydextrose Bioactive compounds Ice cream 

Notes

Acknowledgments

The authors are thankful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support and scholarship, to Alicon Agroindustrial, Sacco Brasil, DuPont, and J.R.Cenzi for providing the resources used in this study and to Marcelo Thomazini for technical support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pizo MA, Vieira EM (2004) Palm harvesting affects seed predation of Euterpe edulis, a threatened palm of the Brazilian Atlantic forest. Braz J Biol 64:669–676CrossRefGoogle Scholar
  2. 2.
    Barroso RM, Reis A, Hanazaki N (2010) Etnoecologia e etnobotânica da palmeira juçara (Euterpe edulis Martius) em comunidades quilombolas do Vale do Ribeira, São Paulo. Acta Bot Bras 24:518–528CrossRefGoogle Scholar
  3. 3.
    Von Allmen C, Morellato LPC, Pizo MA (2004) Seed predation under high seed density condition: the palm Euterpe edulis in the Brazilian Atlantic Forest. J Trop Ecol 20:471–474CrossRefGoogle Scholar
  4. 4.
    Lorenzi H, Moreira De Souza H, Tadeu De Medeiros J, Coelho De Cerqueira LS, Ferreira E (2004) Palmeiras Brasileiras e Exóticas Cultivadas. Instituto Plantarum de Estudos da Flora Ltda, Nova OdessaGoogle Scholar
  5. 5.
    Silva MGCPC, Barretto WS, Serôdio MH (2004) Comparação nutricional da polpa dos frutos de juçara e de açaí Ilhéus. Centro de Pesquisa do Cacau, Ministério da Agricultura, Agropecuária e Abastecimento http://www.ceplacgovbr/indexasp. Accessed 08 May 2017
  6. 6.
    Bicudo MP, Ribani R, Beta T (2014) Anthocyanins, phenolic acids and antioxidant properties of juçara fruits (Euterpe edulis m) along the on-tree ripening process. Plant Foods Hum Nutr 69:142–147CrossRefGoogle Scholar
  7. 7.
    Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JPE, Gibson GR, Pascual-Teresa S (2012) Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem 60:3882–3890CrossRefGoogle Scholar
  8. 8.
    Valdés L, Cuervo A, Salazar N, Ruas-Mediedo P, Gueimonde M, González S (2015) The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct 6:2424–2439CrossRefGoogle Scholar
  9. 9.
    Yousuf B, Gul K, Wani AA, Singh P (2015) Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit Rev Food Sci Nutr 56:2223–2230CrossRefGoogle Scholar
  10. 10.
    Saad SMI (2006) Probioticos e prebioticos: o estado da arte. Braz J Pharm Sci 42:1–16Google Scholar
  11. 11.
    Karaaslan M, Ozden M, Vardin H, Turkoglu H (2011) Phenolic fortification of yogurt using grape and callus extracts. LWT Food Sci Technol 44:1065–1072CrossRefGoogle Scholar
  12. 12.
    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299:152–178CrossRefGoogle Scholar
  13. 13.
    Giusti MM, Wrolstad RE (2001) Anthocyanins: characterization and measurement with UV visible spectroscopy. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New YorkGoogle Scholar
  14. 14.
    Lee J (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278Google Scholar
  15. 15.
    Martin JGP, Porto E, Corrêa CB, Alencar SM, Gloria EM, Cabral ISR, Aquino LM (2012) Antimicrobial potential and chemical composition of agroindustrial wastes. J Nat Prod 5:27–36Google Scholar
  16. 16.
    Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040CrossRefGoogle Scholar
  17. 17.
    ISO 8261:2001 (2001). Milk and milk products -- General guidance for the preparation of test samples, initial suspensions and decimal dilutions for microbiological examination. Retrieved from https://www.iso.org/about-us.html
  18. 18.
    Gbassi GK, Vandamme T, Ennahar S, Marchioni E (2009) Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int J Food Microbiol 129:103–105CrossRefGoogle Scholar
  19. 19.
    Rufino MSM, Alves RE, Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J (2010) Bioactive compounds and antioxidant capacities of 18 nontraditional tropical fruits from Brazil. Food Chem 121:996–1002CrossRefGoogle Scholar
  20. 20.
    Borges GSC, Vieira FGK, Copetti C, Gonzaga LV, Fett R (2011) Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food Res Int 44:708–715CrossRefGoogle Scholar
  21. 21.
    Brito ES, Araújo MCP, Alves RE, Carkeet C, Clevidence BA, Novotny JA (2007) Anthocyanins present in selected tropical fruits: acerola, jambolão, jussara and guajiru. J Agric Food Chem 55:9389–9394CrossRefGoogle Scholar
  22. 22.
    Rodríguez H, Curiel JA, Landete JM, Rivas B, Felipe FL, Gómez-Cordovés C, Mancheño JM, Muñoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90CrossRefGoogle Scholar
  23. 23.
    Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341CrossRefGoogle Scholar
  24. 24.
    García-Ruiz A, Bartolomé B, Martínez-Rodríguez AJ, Pueyo E, Martín-Álvarez PJ, Moreno-Arribas MV (2008) Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control 19:835–841CrossRefGoogle Scholar
  25. 25.
    Steed H, Macfarlane GT, Blackett KL, Bahrami B, Reynolds N, Walsh SV, Cummings JH, Macfarlane S (2010) Clinical trial: the microbiological and immunological effects of synbiotic consumption—a randomized double-blind placebo-controlled study in active Crohn’s disease. Aliment Pharmacol Ther 32:872–883CrossRefGoogle Scholar
  26. 26.
    Röytiö H, Ouwehand AC (2014) The fermentation of polydextrose in the large intestine and its beneficial effects. Benefic Microbes 5:305–314CrossRefGoogle Scholar
  27. 27.
    Mäkeläinen H, Saarinen M, Stowell J, Rautonen N, Ouwehand AC (2010) Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Benefic Microbes 1:139–148CrossRefGoogle Scholar
  28. 28.
    Sharma RJ, Gupta RC, Singh S, Bansal AK, Singh IP (2016) Stability of anthocyanins and anthocyanidins-enriched extracts, and formulations of fruit pulp of Eugenia jambolana (“jamun”). Food Chem 190:808–817CrossRefGoogle Scholar
  29. 29.
    Schwartz SJ, Von Elbee JH, Giusti MM (2010) Corantes. In: Damodaran S, Parkin KL, Fennema OR (eds) Química de alimentos de Fennema, 4th edn. Artmed, Porto AlegreGoogle Scholar
  30. 30.
    Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175:556–567CrossRefGoogle Scholar
  31. 31.
    Rein M (2005) Copigmentation reactions and color stability of berry anthocyanins. Dissertation, University of HelsinkiGoogle Scholar
  32. 32.
    Gris EF, Falcão LD, Ferreira EA, Luiz MTB (2004) Avaliação do tempo de meia-vida de antocianinas de uvas Cabernet Sauvignon em “sorbet”. Bol CEPPA 22:375–386Google Scholar
  33. 33.
    Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61:219–225CrossRefGoogle Scholar
  34. 34.
    Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr 104:S48–S66CrossRefGoogle Scholar
  35. 35.
    Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241CrossRefGoogle Scholar
  36. 36.
    Tzounis X, Vulevic J, Kuhnle GGC, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JPE (2008) Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 99:782–792CrossRefGoogle Scholar
  37. 37.
    Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876–884CrossRefGoogle Scholar
  38. 38.
    Sourabh A, Kanwar SS, Sud RG, Ghabru A, Sharma OP (2013) Influence of phenolic compounds of Kangra tea [Camellia sinensis (L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas. Braz J Microbiol 44:709–715CrossRefGoogle Scholar
  39. 39.
    Shin JS, Chung HS (2015) Antibacterial activities of phenolic components from Camellia sinensis L on pathogenic microorganisms. J Food Sci Nutr 12:135–140Google Scholar
  40. 40.
    Sagdic O, Ozturk I, Cankurt H, Tornuk F (2012) Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food Bioprocess Technol 5:2964–2971CrossRefGoogle Scholar
  41. 41.
    Favaro-Trindade CS, Bernardi S, Bodini RB, Balieiro JCC, Almeida E (2006) Sensory acceptability and stability of probiotic microorganisms and vitamin C in fermented acerola (Malpighia emarginata DC) ice cream. J Food Sci 71:492–495CrossRefGoogle Scholar
  42. 42.
    Favaro-Trindade CS, Balieiro JCC, Dias PF, Sanino FA, Boschini C (2007) Effects of culture, pH and fat concentration on melting rate and sensory characteristics of probiotic fermented yellow Mombin (Spondias mombin L) ice creams. Food Sci Technol Int 13:285–291CrossRefGoogle Scholar
  43. 43.
    Homayouni A, Azizi A, Javadi M, Mahdipour S, Ejtahed H (2012) Factors influencing probiotic survival in ice cream: a review. Int J Dairy Sci 7:1–10CrossRefGoogle Scholar
  44. 44.
    Mizota T (1996) Functional and nutritional foods containing bifidogenic factors. Bull Int Dairy Fed 313:31–35Google Scholar
  45. 45.
    Costa MGM (2014) Desenvolvimento de sorvete simbiótico de açaí (Euterpe oleracea) com Lactobacillus rhamnosus GG e resistência do probiótico em um modelo de digestão gastrintestinal in vitro. Academic Thesis, University of São PauloGoogle Scholar
  46. 46.
    Ranadheera RDCS, Baines SK, Adams MC (2010) Importance of food in probiotic efficacy. Food Res Int 43:1–7CrossRefGoogle Scholar
  47. 47.
    Bedani R, Rossi EA, Saad SMI (2013) Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiol 34:382–389CrossRefGoogle Scholar
  48. 48.
    Ranadheera CS, Evans CA, Adams MC, Baines SK (2012) In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat's milk ice cream and yogurt. Food Res Int 49:619–625CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Júlia Fernanda Urbano Marinho
    • 1
  • Marluci Palazzolli da Silva
    • 1
  • Marcella Chalella Mazzocato
    • 1
  • Fabrício Luiz Tulini
    • 1
    • 2
  • Carmen Sílvia Favaro-Trindade
    • 1
    Email author
  1. 1.Faculdade de Zootecnia e Engenharia de Alimentos (FZEA)Universidade de São Paulo (USP)PirassunungaBrazil
  2. 2.Centro das Ciências Biológicas e da Saúde (CCBS)Universidade Federal do Oeste da Bahia (UFOB)BarreirasBrazil

Personalised recommendations