Probiotics and Antimicrobial Proteins

, Volume 10, Issue 2, pp 243–250 | Cite as

Roles of Probiotic Lactobacilli Inclusion in Helping Piglets Establish Healthy Intestinal Inter-environment for Pathogen Defense

  • Jiajun Yang
  • Kun QianEmail author
  • Chonglong Wang
  • Yijing Wu


The gastrointestinal tract of pigs is densely populated with microorganisms that closely interact with the host and with ingested feed. Gut microbiota benefits the host by providing nutrients from dietary substrates and modulating the development and function of the digestive and immune systems. An optimized gastrointestinal microbiome is crucial for pigs’ health, and establishment of the microbiome in piglets is especially important for growth and disease resistance. However, the microbiome in the gastrointestinal tract of piglets is immature and easily influenced by the environment. Supplementing the microbiome of piglets with probiotic bacteria such as Lactobacillus could help create an optimized microbiome by improving the abundance and number of lactobacilli and other indigenous probiotic bacteria. Dominant indigenous probiotic bacteria could improve piglets’ growth and immunity through certain cascade signal transduction pathways. The piglet body provides a permissive habitat and nutrients for bacterial colonization and growth. In return, probiotic bacteria produce prebiotics such as short-chain fatty acids and bacteriocins that benefit piglets by enhancing their growth and reducing their risk of enteric infection by pathogens. A comprehensive understanding of the interactions between piglets and members of their gut microbiota will help develop new dietary interventions that can enhance piglets’ growth, protect piglets from enteric diseases caused by pathogenic bacteria, and maximize host feed utilization.


Lactobacillus Microbiome Piglets Pathogen Defense 



This work was sponsored by the fund of Construction of research field in Anhui Academy of Agricultural Sciences of China (No.: 16A0410) and Anhui Modern Agricultural Project for Pig Industry. The funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing of the manuscript.

Authors’ Contributions

JY carried out the literature study and drafted the manuscript. KW, CW, and YW critically evaluated the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.


  1. 1.
    Clemente JCC, Ursell LKK, Parfrey LWW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 5:1300–1310CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Erkosar B, Storelli G, Defaye A, Leulier F (2013) Host-intestinal microbiota mutualism: “learning on the fly”. Cell Host Microbe 13:8–14CrossRefPubMedGoogle Scholar
  4. 4.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  6. 6.
    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103CrossRefPubMedGoogle Scholar
  7. 7.
    Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T et al (2014) MetaHIT consortium; MetaHIT consortium an integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841CrossRefPubMedGoogle Scholar
  8. 8.
    Brown RF, Jugg BJ, Harbanm FM, Ashley Z, Kenward CE, Platt J, Hill A, Rice P, Watkins PE (2002) Pathophysiological responses following phosgene exposure in the anaesthetized pig. J Appl Toxicol 22:263–269CrossRefPubMedGoogle Scholar
  9. 9.
    Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1158CrossRefGoogle Scholar
  10. 10.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514CrossRefPubMedGoogle Scholar
  11. 11.
    Hoyos AB (1999) Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int J Infect Dis 3:197–202CrossRefPubMedGoogle Scholar
  12. 12.
    Sgouras D, Maragkoudakis P, Petraki K, Martinez-Gonzalez B, Eriotou E, Michopoulos S, Kalantzopoulos G, Tsakalidou E, Mentis A (2004) In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl Environ Microbiol 70:518–526CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Parvez S, Malik KA, Kang SA, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185CrossRefPubMedGoogle Scholar
  14. 14.
    Rosenfeldt V, Benfeldt E, Nielsen SD, Michaelsen KF, Jeppesen DL, Valerius NH, Paerregaard A (2003) Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J Allergy Clin Immun 11:389–395CrossRefGoogle Scholar
  15. 15.
    Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633CrossRefPubMedGoogle Scholar
  16. 16.
    Huyghebaert G, Ducatelle R, Van IF (2011) An update on alternatives to antimicrobial growth promoters for broilers. Vet J 187:82–188CrossRefGoogle Scholar
  17. 17.
    Yang Y, Iji PA, Choct M (2009) Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World Poultry Sci J 65:97–114CrossRefGoogle Scholar
  18. 18.
    Shen YB, Piao XS, Kim SW, Wang L, Liu P, Yoon I, Zhen YG (2009) Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J Anim Sci 87:2614–2624CrossRefPubMedGoogle Scholar
  19. 19.
    Molbak L, Thomsen LE, Jensen TK, Knudsen KEB, Boye M (2007) Increased amount of Bifidobacterium thermacidophilum and Megasphaera elsdenii in the colonic microbiota of pigs fed a swine dysentery preventive diet containing chicory roots and sweet lupine. J Appl Microbiol 103:1853–1867CrossRefPubMedGoogle Scholar
  20. 20.
    Wegmann U, MacKenzie DA, Zheng J, Goesmann A, Roos S, Swarbreck D, Walter J, Crossman LC, Juge N (2015) The pan-genome of Lactobacillus reuteri strains originating from the pig gastrointestinal tract. BMC Genomics 6:1023CrossRefGoogle Scholar
  21. 21.
    Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da CG et al (2016) Card9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 22:598–605CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li H, Lei Z, Chen L, Qi Z, Wang W, Qiao J (2016) Lactobacillus acidophilus, alleviates the inflammatory response to enterotoxigenic Escherichia coli, k88 via inhibition of the nf-κb and p38 mitogen-activated protein kinase signaling pathways in piglets. BMC Microbiol 16:273CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vandamme P, De Bruyne K, Pot B (2014) Phylogenetics and systematics. In: Holzapfel WH, Wood BJB (eds) Lactic acid bacteria: biodiversity and taxonomy. Wiley Blackwell, Chichester, pp 31–44CrossRefGoogle Scholar
  24. 24.
    Kim J, Nguyen SG, Guevarra RB, Lee I, Unno T (2015) Analysis of swine fecal microbiota at various growth stages. Arch Microbiol 197:753–759CrossRefPubMedGoogle Scholar
  25. 25.
    Niu Q, Li P, Hao S, Zhang Y, Kim SW, Li H et al (2015) Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci Rep 5:9938CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Roselli M, Finamore A, Britt MS, Mengheri E (2006) The probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect the intestinal Caco-2 cells from inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br J Nutr 95:1177–1184CrossRefPubMedGoogle Scholar
  27. 27.
    Turner MS, Waldherr F, Loessner MJ, Giffard PM (2007) Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Syst Appl Microbiol 30:58–67CrossRefPubMedGoogle Scholar
  28. 28.
    Lawley TD, Walker AW (2013) Intestinal colonization resistance. Immunology 138:1–11CrossRefPubMedGoogle Scholar
  29. 29.
    Lu L, Walker WA (2001) Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr 73:1124s–1130sCrossRefPubMedGoogle Scholar
  30. 30.
    Markowicz C, Olejnik-Schmidt A, Borkowska M, Schmidt MT (2014) SpaCBA sequence instability and its relationship to the adhesion efficiency of Lactobacillus casei group isolates to Caco-2 cells. Acta Biochim Pol 61:341–347PubMedGoogle Scholar
  31. 31.
    Bernet MF, Brassart D, Neeser JR, Servin AL (1994) Lactobacillus acidophilus La-1 binds to cultured human intestinal-cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35:483–489CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee YK, Puong KY (2002) Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br J Nutr 88:S101–S108CrossRefPubMedGoogle Scholar
  33. 33.
    Gueimonde M, Jalonen L, He F, Hiramatsu M, Salminen S (2006) Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Res Int 39:467–471CrossRefGoogle Scholar
  34. 34.
    Collado MC, Grzeskowiak L, Salminen S (2007) Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol 55:260–265CrossRefPubMedGoogle Scholar
  35. 35.
    Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300:57–62CrossRefPubMedGoogle Scholar
  36. 36.
    Neal-McKinney JM, Lu X, Duong T, Larson CL, Call DR, Shah DH, Konkel ME (2012) Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS One 7:e43928CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pridmore RD, Pittet AC, Praplan F, Cavadini C (2008) Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett 283:210–215CrossRefPubMedGoogle Scholar
  38. 38.
    Lopez P, Gonzalez-Rodriguez I, Sanchez B, Ruas-Madiedo P, Suarez A, Margolles A, Gueimonde M (2012) Interaction of Bifidobacterium bifidum LMG13195 with HT29 cells influences regulatory-Tcellassociated chemokine receptor expression. Appl Environ Microbiol 78:850–2857CrossRefGoogle Scholar
  39. 39.
    Chassaing B, Gewirtz AT (2016) Has provoking microbiota aggression driven the obesity epidemic? BioEssays 38:122–128CrossRefPubMedGoogle Scholar
  40. 40.
    Sultana R, McBain AJ, O’Neill CA (2013) Strain-dependent augmentation of tight–junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates. Appl Environ Microbiol 79:4887–4894CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, Russell SL, Vallance BA, Finlay BB (2011) Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 79:1536–1545CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Isaacson R, Kim HB (2012) The intestinal microbiome of the pig. Anim Health Res Rev 13:100–109CrossRefPubMedGoogle Scholar
  43. 43.
    Weese JS, Slifierz M, Jalali M, Friendship R (2014) Evaluation of the nasal microbiota in slaughter-age pigs and the impact on nasal methicillin-resistant Staphylococcus aureus (MRSA) carriage. BMC Vet Res 15:69CrossRefGoogle Scholar
  44. 44.
    Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR et al (2006) Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 8:1191–1199CrossRefPubMedGoogle Scholar
  45. 45.
    Bateup JM, Dobbinson S, McConnell MA, Munro K, Tannock GW (1998) Molecular analysis of the composition of Lactobacillus populations inhabiting the stomach and caecum of pigs. Microb Ecol Health Dis 10:95–102CrossRefGoogle Scholar
  46. 46.
    Pabst R, Russell MW, Brandtzaeg P (2008) Tissue distribution of lymphocytes and plasma cells and the role of the gut. Trends Immunol 29:206–208CrossRefPubMedGoogle Scholar
  47. 47.
    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sharma R, Young C, Neu J (2010) Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol 4:305879Google Scholar
  49. 49.
    Remus DM, Kleerebezem M, Bron PA (2011) An intimate tetea-tete–how probiotic lactobacilli communicate with the host. Eur J Pharmacol 668:S33–S42CrossRefPubMedGoogle Scholar
  50. 50.
    Wells JM, Rossi O, Meijerink M, van Baarlen P (2011) Epithelial crosstalk at the microbiota–mucosal interface. Proc Natl Acad Sci U S A 108:4607–4614CrossRefPubMedGoogle Scholar
  51. 51.
    Asong J, Wolfert MA, Maiti KK, Miller D, Boons GJ (2009) Binding and cellular activation studies reveal that toll-like receptor 2 can differentially recognize peptidoglycan from Gram-positive and Gram-negative bacteria. J Biol Chem 284:8643–8653CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dziarski R (2003) Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol Life Sci 60:1793–1804CrossRefPubMedGoogle Scholar
  53. 53.
    Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76:159–184CrossRefPubMedGoogle Scholar
  54. 54.
    Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230CrossRefPubMedGoogle Scholar
  55. 55.
    Vollmer W, Blanot D, de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167CrossRefPubMedGoogle Scholar
  56. 56.
    Claes IJ, Segers ME, Verhoeven TL, Dusselier M, Sels BF, De Keersmaecker SC, Vanderleyden J, Lebeer S (2012) Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb Cell Factories 11:161CrossRefGoogle Scholar
  57. 57.
    Jang KS, Baik JE, Han SH, Chung DK, Kim BG (2011) Multi-spectrometric analyses of lipoteichoic acids isolated from Lactobacillus plantarum. Biochem Biophys Res Commun 407:823–830CrossRefPubMedGoogle Scholar
  58. 58.
    Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362CrossRefPubMedGoogle Scholar
  59. 59.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al (2000) A toll-like receptor recognizes bacterial DNA. Nature 408:740–745CrossRefPubMedGoogle Scholar
  60. 60.
    Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, Lee HK, Shen C, Cojocaru G, Shenouda S et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8:1327–1336CrossRefPubMedGoogle Scholar
  61. 61.
    Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF (2014) Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci 4:1496–1503CrossRefGoogle Scholar
  62. 62.
    Liu H, Zhang J, Zhang S, Yang F, Thacker PA, Zhang G et al (2014) Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem 62:860–866CrossRefPubMedGoogle Scholar
  63. 63.
    Chang YH, Kim JK, Kim HJ, Kim WY, Kim YB, Park YH (2001) Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie Van Leeuwenhoek 80:193–199CrossRefPubMedGoogle Scholar
  64. 64.
    Munoz-Tamayo R, Laroche B, Walter E, Doré J, Duncan SH, Flint HJ, Leclerc M (2011) Kinetic modeling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol 76:615–624CrossRefPubMedGoogle Scholar
  65. 65.
    Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ (2004) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915–923CrossRefPubMedGoogle Scholar
  66. 66.
    Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101:541–550CrossRefPubMedGoogle Scholar
  68. 68.
    Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064CrossRefPubMedGoogle Scholar
  69. 69.
    Rycroft CE, Jones RM, Gibson GR, Rastall RA (2001) A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J Appl Microbiol 91:878–887CrossRefPubMedGoogle Scholar
  70. 70.
    Bergman EN (1990) Energy contributions of volatile fatty-acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590CrossRefPubMedGoogle Scholar
  71. 71.
    Sakata T (1987) Stimulatory effect of short-chain fatty-acids on epithelialcell proliferation in the rat intestine—a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 58:95–103CrossRefPubMedGoogle Scholar
  72. 72.
    Scheppach W, Lueh H, Menzel T (2001) Beneficial health effects of low-digestible carbohydrate consumption. Br J Nutr 85:S23–S30CrossRefPubMedGoogle Scholar
  73. 73.
    Zampa A, Silvi S, Fabiani R, Morozzi G, Orpianesi C, Cresci A (2004) Effects of different digestible carbohydrates on bile acid metabolism and SCFA production by human gut micro-flora grown in an in vitro semi-continuous culture. Anaerobe 10:19–26CrossRefPubMedGoogle Scholar
  74. 74.
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119CrossRefPubMedGoogle Scholar
  75. 75.
    Kiely EM, Ajayi NA, Wheeler RA, Malone M (2001) Diversion procto-colitis: response to treatment with short-chain fatty acids. J Pediatr Surg 36:1514–1517CrossRefPubMedGoogle Scholar
  76. 76.
    Schilderink R, Verseijden C, de Jonge WJ (2013) Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol 4:226PubMedCentralPubMedGoogle Scholar
  77. 77.
    Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL (2013) Short chain fatty acids and their receptors: new metabolic targets. Transl Res 161:131–140CrossRefPubMedGoogle Scholar
  78. 78.
    Santini V, Gozzini A, Ferrari G (2007) Histone deacetylase inhibitors: molecular and biological activity as clinical application. Curr Drug Metab 8:383–394CrossRefPubMedGoogle Scholar
  79. 79.
    Schwab M, Reynders V, Ulrich S, Zahn N, Stein J, Schroder O (2006) PPAR gamma is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis 11:801–1811CrossRefGoogle Scholar
  80. 80.
    Viladomiu M, Hontecillas R, Yuan LJ, Lu PY, Bassaganya-Riera J (2013) Nutritional protective mechanisms against gut inflammation. J Nutr Biochem 24:929–939CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Annese V, Rogai F, Settesoldi A, Bagnoli S (2012) PPAR gamma in inflammatory bowel disease. PPAR Res 2012:620839CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Martin H (2009) Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res 669:1–7CrossRefPubMedGoogle Scholar
  83. 83.
    Vanhoutvin SA, Troost FJ, Hamer HM, Lindsey PJ, Koek GH, Jonkers DM, Kodde A, Venema K, Brummer RJ (2009) Butyrate-induced transcriptional changes in human colonic mucosa. PLoS One 4:e6759CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Koboziev I, Webb CR, Furr KL, Grisham MB (2014) Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med 68:122–133CrossRefPubMedGoogle Scholar
  85. 85.
    Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104:7617–7621CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11:2112–2122CrossRefPubMedGoogle Scholar
  87. 87.
    Kamada N, Chen GY, Inohara N, Nunez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575CrossRefPubMedGoogle Scholar
  89. 89.
    Tao Y, Drabik KA, Waypa TS, Musch MW, Alverdy JC, Schneewind O, Chang EB, Petrof EO (2006) Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol 291:C1018–C11030CrossRefGoogle Scholar
  90. 90.
    Seth A, Yan F, Polk DB, Rao RK (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. American journal of physiology Gastrointest Liver Physiol 294:G1060–G1069CrossRefGoogle Scholar
  91. 91.
    Macho Fernandez E, Pot B, Grangette C (2011a) Beneficial effect of probiotics in IBD: are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2:280–286CrossRefPubMedGoogle Scholar
  92. 92.
    Macho Fernandez E, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, Grangette C (2011b) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60:1050–1059CrossRefPubMedGoogle Scholar
  93. 93.
    Harper AF, Kornegay ET, Bryant KL, Thomas HR (1983) Efficacy of virginiamycin and a commercially-available Lactobacillus probiotic in swine diets. Anim Feed Sci Technol 8:69–76CrossRefGoogle Scholar
  94. 94.
    Cruchet S, Furnes R, Maruy A, Hebel E, Palacios J, Medina F, Ramirez N, Orsi M, Rondon L, Sdepanian V, Xóchihua L, Ybarra M, Zablah RA (2015) The use of probiotics in pediatric gastroenterology: a review of the literature and recommendations by Latin-American experts. Paediatr Drugs 17:199–216CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chapman CM, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17CrossRefPubMedGoogle Scholar
  96. 96.
    Whelan K, Myers CE (2010) Safety of probiotics in patients receiving nutritional support: a systematic review of case reports, randomized controlled trials, and nonrandomized trials. Am J Clin Nutr 91:687–703CrossRefPubMedGoogle Scholar
  97. 97.
    Andrejčáková Z, Sopková D, Vlčková R, Kulichová L, Gancarčíková S, Almášiová V, Holovská K, Petrilla V, Krešáková L (2016) Synbiotics suppress the release of lactate dehydrogenase, promote non-specific immunity and integrity of jejunum mucosa in piglets. Anim Sci J 7:1157–1166CrossRefGoogle Scholar
  98. 98.
    Sopková D, Hertelyová Z, Andrejčáková Z, Vlčková R, Gancarčíková S, Petrilla V, Ondrašovičová S, Krešáková L (2017) The application of probiotics and flaxseed promotes metabolism of n-3 polyunsaturated fatty acids in pigs. J Appl Anim Res 45:93–98CrossRefGoogle Scholar
  99. 99.
    Yang J, Xu Y, Qian K, Zhang W, Wu D, Wang C (2016) Effects of chromium-enriched Bacillus subtilis KT260179 supplementation on growth performance, caecal microbiology, tissue chromium level, insulin receptor expression and plasma biochemical profile of mice under heat stress. Br J Nutr 115:774–781CrossRefPubMedGoogle Scholar
  100. 100.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514CrossRefPubMedGoogle Scholar
  101. 101.
    Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. doi: 10.1038/NMICROBIOL2016203 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jiajun Yang
    • 1
  • Kun Qian
    • 1
    Email author
  • Chonglong Wang
    • 1
  • Yijing Wu
    • 1
  1. 1.The Institute of Animal Husbandry and Veterinary MedicineAnhui Academy of Agricultural SciencesHefeiPeople’s Republic of China

Personalised recommendations