Probiotics and Antimicrobial Proteins

, Volume 8, Issue 4, pp 177–182 | Cite as

Bacteriocins: Not Only Antibacterial Agents

  • Djamel Drider
  • Farida Bendali
  • Karim Naghmouchi
  • Michael L. Chikindas
Article

Abstract

This commentary was aimed at shedding light on the multifunction of bacteriocins mainly those produced by lactic acid bacteria. These antibacterial agents were first used to improve food safety and quality. With the increasing antibiotic resistance concern worldwide, they have been considered as viable agents to replace or potentiate the fading abilities of conventional antibiotics to control human pathogens. Bacteriocins were also shown to have potential as antiviral agents, plant protection agents, and anticancer agents. Bacteriocins were reported to be involved in shaping bacterial communities through inter- and intra-specific interactions, conferring therefore to producing strains a probiotic added value. Furthermore, bacteriocins recently were shown as molecules with a fundamental impact on the resilience and virulence of some pathogens.

Keywords

Bacteriocins Multifunction Activities 

References

  1. 1.
    Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 29(13 Suppl 1):S3CrossRefGoogle Scholar
  3. 3.
    Messaoudi S, Kergourlay G, Rossero A, Ferchichi M, Prévost H, Drider D, Manai M, Dousset X (2011) Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. Int Microbiol 14:103–110Google Scholar
  4. 4.
    Nazef L, Belguesmia Y, Tani A, Prévost H, Drider D (2008) Identification of lactic acid bacteria from poultry feces: evidence on anti-Campylobacter and anti-Listeria activities. Poult Sci 87:329–334CrossRefGoogle Scholar
  5. 5.
    Line JE, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Levchuk VP, Svetoch OE, Seal BS, Siragusa GR, Stern NJ (2008) Isolation and purification of enterocin E-760 with broad antimicrobial activity against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 52:1094–1100CrossRefGoogle Scholar
  6. 6.
    Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, Snipen L, Hernández PE, Nes IF, Diep DB (2011) Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology 157:3256–3267CrossRefGoogle Scholar
  7. 7.
    Draper LA, Cotter PD, Hill C, Ross RP (2015) Lantibiotic resistance. Microbiol Mol Biol Rev 79:171–191CrossRefGoogle Scholar
  8. 8.
    Maldonado-Barragán A, Caballero-Guerrero B, Martín V, Ruiz-Barba JL, Rodríguez JM (2016) Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol 12:16–37Google Scholar
  9. 9.
    Chanos P, Mygind T (2016) Co-culture-inducible bacteriocin production in lactic acid bacteria. Appl Microbiol Biotechnol 100:4297–4308CrossRefGoogle Scholar
  10. 10.
    Gratia A, Fredericq P (1946) Diversite’ des souches antibiotiques de E. coli et étendue variable de leur champs d’action. Comptes Rendus Soc. Biol. (Paris) 140:1032–1033Google Scholar
  11. 11.
    Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 27(10):22. doi:10.1186/1471-2180-10-22 CrossRefGoogle Scholar
  12. 12.
    Hammami R, Zouhir A, Ben Hamida J, Fliss I (2007) BACTIBASE : a new web-accessible database for bacteriocin characterization. BMC Microbiol 7:89CrossRefGoogle Scholar
  13. 13.
    Wang G, Li X, Wang Z (2016) APD3: the antimicrobial tide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093CrossRefGoogle Scholar
  14. 14.
    Jennsen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511CrossRefGoogle Scholar
  15. 15.
    Montville TJ, Chen Y (1998) Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl Microbiol Biotechnol 50:511–519CrossRefGoogle Scholar
  16. 16.
    Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364CrossRefGoogle Scholar
  17. 17.
    Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779CrossRefGoogle Scholar
  18. 18.
    Hart P, Oppedijk SF, Breukink E, Martin NI (2016) New insights into nisin’s antibacterial mechanism revealed by binding studies with synthetic lipid II analogues. Biochemistry 55:232–237CrossRefGoogle Scholar
  19. 19.
    Héchard Y, Sahl HG (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557CrossRefGoogle Scholar
  20. 20.
    Ramnath M, Arous S, Gravesen A, Hastings JW, Héchard Y (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology 150:2663–2668CrossRefGoogle Scholar
  21. 21.
    Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582CrossRefGoogle Scholar
  22. 22.
    Cotter PD (2014) An ‘Upp’-turn in bacteriocin receptor identification. Mol Microbiol 92:1159–1163CrossRefGoogle Scholar
  23. 23.
    Kjos M, Oppegård C, Diep DB, Nes IF, Veening JW, Nissen-Meyer J, Kristensen T (2014) Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol Microbiol 92:1177–1187CrossRefGoogle Scholar
  24. 24.
    Bastos Mdo C, Coelho ML, Santos OC (2015) Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 161:683–700CrossRefGoogle Scholar
  25. 25.
    Belguesmia Y, Madi A, Sperandio D, Merieau A, Feuilloley M, Prévost H, Drider D, Connil N (2011) Growing insights into the safety of bacteriocins: the case of enterocin S37. Res Microbiol 162:159–163CrossRefGoogle Scholar
  26. 26.
    Das D, Goyal A (2014) Characterization of a noncytotoxic bacteriocin from probiotic Lactobacillus plantarum DM5 with potential as a food preservative. Food Funct 5:2453–2462CrossRefGoogle Scholar
  27. 27.
    Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:2475067CrossRefGoogle Scholar
  28. 28.
    Naghmouchi K, Drider D, Baah J, Teather R (2010) Nisin A and polymyxin B as synergistic inhibitors of Gram-positive and Gram-negative bacteria. Probiotics Antimicrob Prot 2:98–103CrossRefGoogle Scholar
  29. 29.
    Naghmouchi K, Le Lay C, Baah J, Drider D (2012) Antibiotic and antimicrobial peptide combinations: synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Res Microbiol 163:101–108CrossRefGoogle Scholar
  30. 30.
    Naghmouchi K, Baah J, Hober D, Jouy E, Rubrecht C, Sané F, Drider D (2013) Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob Agents Chemother 57:2719–2725CrossRefGoogle Scholar
  31. 31.
    Lebel G, Piché F, Frenette M, Gottschalk M, Grenier D (2013) Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics. Peptides 50:19–23CrossRefGoogle Scholar
  32. 32.
    Mathur H, O’Connor PM, Hill C, Cotter PD, Ross RP (2013) Analysis of anti-Clostridium difficile activity of thuricin CD, vancomycin, metronidazole, ramoplanin, and actagardine, both singly and in paired combinations. Antimicrob Agents Chemother 57:2882–2886CrossRefGoogle Scholar
  33. 33.
    Al Atya AK, Belguesmia Y, Chataigne G, Ravallec R, Vachée A, Szunerits S, Boukherroub R, Drider D (2016) Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. Front Microbiol 31:817Google Scholar
  34. 34.
    Mathur H, Rea MC, Cotter PD, Hill C, Ross RP (2016) The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathog 8:20CrossRefGoogle Scholar
  35. 35.
    Field D, O’Connor R, Cotter PD, Ross RP, Hill C (2016) In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Front Microbiol 18:508Google Scholar
  36. 36.
    Wachsman MB, Farías ME, Takeda E, Sesma F, de Ruiz Holgado AP, de Torres RA, Coto CE (1999) Antiviral activity of enterocin CRL35 against herpesviruses. Int J Antimicrob Agents 12:293–299CrossRefGoogle Scholar
  37. 37.
    Wachsman MB, Castilla V, de Ruiz Holgado AP, de Torres RA, Sesma F, Coto CE (2003) Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir Res 58:17–24CrossRefGoogle Scholar
  38. 38.
    Qureshi H, Saeed S, Ahmed S, Rasool SA (2006) Coliphage hsa as a model for antiviral studies/spectrum by some indigenous bacteriocin like inhibitory substances (BLIS). Pak J Pharm Sci 19:182–185Google Scholar
  39. 39.
    Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LM, Franco BD, Vaz-Velho M, Drider D (2010) Characterization of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27:869–879CrossRefGoogle Scholar
  40. 40.
    Quintana VM, Torres NI, Waschman MB, Sinko PJ, Castilla V, Chikindas M (2014) Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. J Appl Microbiol 117:1253–1259CrossRefGoogle Scholar
  41. 41.
    Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth RD, Schols D (2013) The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 28(8):e64010CrossRefGoogle Scholar
  42. 42.
    Al-Kassaa I, Hober D, Hamze M, Chihib NE, Drider D (2014) Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Prot 6:177–185CrossRefGoogle Scholar
  43. 43.
    Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Mitreva M, Clardy J, Linington RG, Fischbach MA (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158:1402–1414CrossRefGoogle Scholar
  44. 44.
    Donia MS, Fischbach MA (2015) Small molecules from the human microbiota. Science 349:1254766CrossRefGoogle Scholar
  45. 45.
    Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, Cao Y, Bousounis P, Kristich CJ, Salzman NH (2015) Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526:719–722CrossRefGoogle Scholar
  46. 46.
    Guinane CM, Lawton EM, O’Connor PM, O’Sullivaan O, Hill C, Ross P, Cotter PD (2016) The bacteriocin bactofencin A subtly modulates gut microbial populations. Anaerobe 40:41–49CrossRefGoogle Scholar
  47. 47.
    Kaur S, Kaur S (2015) Bacteriocins as potential anticancer agents. Front Pharmacol 10(6):272Google Scholar
  48. 48.
    Dobrzyńska I, Szachowicz-Petelska B, Figaszewski Z, Sulkowski S (2005) Changes in electric charge and phospholipid composition in human colorectal cancer cells. Mol Cell Biochem 276:113–119CrossRefGoogle Scholar
  49. 49.
    Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochem Biophys Acta 1778:357–375CrossRefGoogle Scholar
  50. 50.
    Martín R, Escobedo S, Martín C, Crespo A, Quiros LM, Suarez JE (2015) Surface glycosaminoglycans protect eukaryotic cells against membrane-driven peptide bacteriocins. Antimicrob Agents Chemother 59:677–681CrossRefGoogle Scholar
  51. 51.
    Sok M, Sentjurc M, Schara M (1999) Membrane fluidity characteristics of human lung cancer. Cancer Lett 139:215–220CrossRefGoogle Scholar
  52. 52.
    Chaudhary J, Munshi M (1995) Scanning electron microscopic analysis of breast aspirates. Cytopathology 6:162–167CrossRefGoogle Scholar
  53. 53.
    Chan SC, Hui L, Chen HM (1998) Enhancement of the cytolytic effect of anti-bacterial cecropin by the microvilli of cancer cells. Anticancer Res 18:4467–4474Google Scholar
  54. 54.
    Chan SC, Yau WL, Wang W, Smith DK, Sheu FS, Chen HM (1998) Microscopic observations of the different morphological changes caused by anti-bacterial peptides on Klebsiella pneumoniae and HL-60 leukemia cells. J Pept Sci 4:413–425CrossRefGoogle Scholar
  55. 55.
    Nguyen C, Nguyen VD (2016) Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. Biomed Res Int 2016:8490482Google Scholar
  56. 56.
    Zhu LH, Li C, Wu JA, Liang JG, Shi YF (2008) Bacteriocins from lactic acid bacteria increases tumor necrosis factor-alpha expression in a rat kidney model of chronic rejection. Transplant Proc 40:3746–3747CrossRefGoogle Scholar
  57. 57.
    Subramanian S, Smith DL (2015) Bacteriocins from the rhizosphere microbiome—from an agriculture perspective. Front Plant Sci 30:909Google Scholar
  58. 58.
    Wladyka B, Piejko M, Bzowska M, Pieta P, Krzysik M, Mazurek Ł, Guevara-Lora I, Bukowski M, Sabat AJ, Friedrich AW, Bonar E, Międzobrodzki J, Dubin A, Mak P (2015) A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors. Sci Rep 5:14569CrossRefGoogle Scholar
  59. 59.
    Quereda JJ, Dussurget O, Nahori MA, Ghozlane A, Volant S, Dillies MA, Regnault B, Kennedy S, Mondot S, Villoing B, Cossart P, Pizarro-Czerda J (2016) Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc Natl Acad Sci USA 17:5706–57011CrossRefGoogle Scholar
  60. 60.
    Kjos M, Miller E, Slager J, Lake FB, Gericke O, Roberts IS, Rozen DE, Veening JW (2016) Expression of Streptococcus pneumoniae bacteriocins is induced by antibiotics via regulatory interplay with the competence system. PLoS Pathog 12:e1005422CrossRefGoogle Scholar
  61. 61.
    Wholey WY, Kochan TJ, Storck DN, Dawid S (2016) Coordinated bacteriocin expression and competence in Streptococcus pneumoniae contributes to genetic adaptation through neighbor predation. PLoS Pathog 12(2):1005413CrossRefGoogle Scholar
  62. 62.
    Reck M, Tomasch J, Wagner-Döbler I (2015) The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet 11(7):e1005353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Djamel Drider
    • 1
  • Farida Bendali
    • 2
  • Karim Naghmouchi
    • 3
  • Michael L. Chikindas
    • 4
    • 5
  1. 1.Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d’OpaleEA 7394 – ICV - Institut Charles ViolletteLilleFrance
  2. 2.Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaïaAlgeria
  3. 3.Laboratoire des Microorganismes et Biomolécules Actives (LMBA), Faculté des Sciences de TunisUniversité El-Manar II 2092 El-Manar-IITunisTunisia
  4. 4.School of Environmental and Biological SciencesRutgers State UniversityNew BrunswickUSA
  5. 5.Center for Digestive HealthNew Jersey Institute for Food, Nutrition and HealthNew BrunswickUSA

Personalised recommendations