Skip to main content
Log in

A New Synthetic Peptide with In vitro Antibacterial Potential Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA)

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this work, we performed the rational design of a cationic antimicrobial peptide, GIBIMPY4, using the software DEPRAMPs developed at the GIBIM research group. GIBIMPY4 has a length of 17 amino acids, it is amphipathic, its structure is α-helix and it has a net charge of (+5). Solid-phase peptide synthesis was performed using the Fmoc strategy in acid medium. The primary structure was confirmed by MALDI-TOF mass spectrometry. The antimicrobial activity of the peptide was evaluated by broth microdilution method by measuring optical density in 96-well microplates. The minimal inhibitory concentration of GIBIMPY4 to kill 50 % of the bacterial cells (MIC50) was 6.20 ± 0.02 µM for MRSA and 4.55 ± 0.02 µM for E. coli O157:H7, while also reporting a bacteriostatic effect for the later. GIBIMPY4 activity was sensitive to salt concentration in E. coli but insignificant effect in its activity against MRSA. The peptide seems to be a broad-spectrum antimicrobial agent based on the results against Gram-positive and Gram-negative bacteria and was specific for bacterial cells E. coli O157:H7 with index of specificity equal to 9.01 in vitro assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. In: Surveillance of antimicrobial drug resistance in disease-specific programmes, 1st edn. WHO Library, Geneva, pp 1–256

  2. Petty NK, Zakour NLB, Stanton-Cook M et al (2014) Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci USA 111:5694–5699. doi:10.1073/pnas.1322678111

    Article  CAS  Google Scholar 

  3. Chambers HF (2001) The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 7:178–182. doi:10.3201/eid0702.700178

    Article  CAS  Google Scholar 

  4. Welte T, Pletz MW (2010) Antimicrobial treatment of nosocomial meticillin-resistant Staphylococcus aureus (MRSA) pneumonia: current and future options. Int J Antimicrob Agents 36:391–400. doi:10.1016/j.ijantimicag.2010.06.045

    Article  CAS  Google Scholar 

  5. Haddadin AS, Fappiano SA, Lipsett PA (2002) Methicillian resistant Staphylococcus aureus (MRSA) in the intensive care unit. Postgrad Med J 78:385–392

    Article  CAS  Google Scholar 

  6. Brogden KA (2011) Perspectives and peptides of the next generation. In: Drider D, Rebuffat S (eds) Prokaryotic antimicrobial peptides: genes to applications, 1st edn. Springer, New York, pp 423–440

    Chapter  Google Scholar 

  7. Brandenburg LO, Merres J, Albrecht LJ et al (2012) Antimicrobial peptides: multifunctional drugs for different applications. Polymers 4:539–560. doi:10.3390/polym4010539

    Article  Google Scholar 

  8. Baltzer SA, Brown MH (2011) Antimicrobial peptides—promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol 20:228–235. doi:10.1159/000331009

    Article  CAS  Google Scholar 

  9. Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176. doi:10.1007/s00018-011-0710-x

    Article  Google Scholar 

  10. Bhunia A, Saravanan R, Mohahram H et al (2011) NMR structures and interactions of Temporin-1Tl and Temporin-1Tb with lipopolysaccharide micelles. J Biol Chem 286:24394–24406. doi:10.1074/jbc.M110.189662

    Article  CAS  Google Scholar 

  11. Rinaldi AC, Mangoni ML, Rufo A et al (2002) Temporin L: antimicrobial, haemolytic and cytotoxic activities, an effects on membrane permeabilization in lipid vesicles. J Biochem 368:91–100

    Article  CAS  Google Scholar 

  12. Finberg RW, Moellering RC, Tally FP et al (2004) The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis 39:1314–1320. doi:10.1086/425009

    Article  CAS  Google Scholar 

  13. Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317. doi:10.1016/j.bbamem.2008.06.007

    Article  CAS  Google Scholar 

  14. Shu JY, Huang YJ, Tan C et al (2010) Amphiphilic peptide-polymer conjugates based on the coiled-coil helix bundle. Biomacromolecules 11:1443–1452. doi:10.1021/bm100009e

    Article  CAS  Google Scholar 

  15. Jahnsen RD, Frimodt-Møller N, Franzyk H (2012) Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli: a comparative study of different backbones. J Med Chem 55:7253–7261. doi:10.1021/jm300820a

    Article  CAS  Google Scholar 

  16. Pitteloud J-P, Bionda N, Cudic P (2013) Synthesis of side chain N,N′-diaminoalkylated derivates of basic amino acids for application in solid-phase peptide synthesis. In: Cudic P (ed) Peptide modifications to increase metabolic stability and activity, 1st edn. Humana Press, New York, pp 211–236

    Google Scholar 

  17. Cheung WA, Hancock REW (2011) Optimization of antibacterial peptides by genetic algorithms and cheminformatics. Chem Biol Drug Des 77:48–56. doi:10.1111/j.1747-0285.2010.01044.x

    Article  Google Scholar 

  18. Fjell CD, Hancock REW (2008) QSAR modeling and computer-aided design of antimicrobial peptides. J Pept Sci 14:110–114. doi:10.1002/psc

    Article  Google Scholar 

  19. Dudek AZ, Arodz T, Galvez J (2006) Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 9:213–228. doi:10.2174/138620706776055539

    Article  CAS  Google Scholar 

  20. Thomas S, Karnik S, Barai RS et al (2009) CAMP: a useful resource for research on antimicrobial peptides. Nucl Acids Res 38:774–780. doi:10.1093/nar/gkp1021

    Article  Google Scholar 

  21. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinform Appl Note 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  22. Thévenet P, Shen Y, Maupetit J et al (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucl Acids Res 40:288–293. doi:10.1093/nar/gks419

    Article  Google Scholar 

  23. Maupetit J, Derreumaux P, Tufféry P (2010) A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem 31:726–738. doi:10.1002/jcc.21365

    CAS  Google Scholar 

  24. Keiderling TA (2002) Protein and peptide secondary structure and conformational determination with vibrational circular dichroism. Curr Opin Chem Biol 6:682–688

    Article  CAS  Google Scholar 

  25. Cruz J, Ortiz C, Guzman F et al (2014) Design and activity of novel lactoferrampin analogues against O157:H7 enterohemorrhagic Escherichia coli. Biopolymers 101:319–328. doi:10.1002/bip.22360

    Article  CAS  Google Scholar 

  26. Paredes D, Ortiz C, Torres R (2014) Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Int J Nanomed 9:1717–1729. doi:10.2147/IJN.S57156

    Google Scholar 

  27. Ma P, Wang Z, Pflugfelder S, Li D-Q (2010) Toll-like receptors mediate induction of peptidoglycan recognition proteins in human corneal epithelial cells. Exp Eye Res 90:130–136. doi:10.1016/j.exer.2009.09.021

    Article  CAS  Google Scholar 

  28. Guan R, Roychowdhury A, Ember B et al (2004) Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. PNAS 101:17168–17173

    Article  CAS  Google Scholar 

  29. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook, 1st edn. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  30. Gopal R, Lee JK, Lee JH et al (2013) Effect of repetitive lysine-tryptophan motifs on the eukaryotic membrane. Amino Acids 44:645–660. doi:10.1007/s00726-012-1388-6

    Article  CAS  Google Scholar 

  31. Mo RH, Zaro JL, Shen WC (2012) Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Mol Pharm 9:299–309. doi:10.1021/mp200481g

    Article  CAS  Google Scholar 

  32. Pandey BK, Srivastava S, Singh M, Ghosh JK (2011) Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochem J 436:609–620. doi:10.1042/BJ20110056

    Article  CAS  Google Scholar 

  33. Lohner K, Prenner EJ (1999) Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim Biophys Acta 1462:141–156. doi:10.1016/S0005-2736(99)00204-7

    Article  CAS  Google Scholar 

  34. Slocik JM, Govorov AO, Naik RR (2011) Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett 11:701–705. doi:10.1021/nl1038242

    Article  CAS  Google Scholar 

  35. Gopal R, Park JS, Seo CH, Park Y (2012) Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int J Mol Sci 13:3229–3244. doi:10.3390/ijms13033229

    Article  CAS  Google Scholar 

  36. Wadhwani P, Reichert J, Ulrich AS (2012) Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur Biophys J 41:177–187. doi:10.1007/s00249-011-0771-7

    Article  CAS  Google Scholar 

  37. Bertsche U, Mayer C, Götz F, Gust AA (2014) Peptidoglycan perception—sensing bacteria by their common envelope structure. Int J Med Microbiol 305:217–223. doi:10.1016/j.ijmm.2014.12.019

    Article  Google Scholar 

  38. Jacqueline C, Caillon J, Le Mabecque V et al (2003) In vitro activity of linezolid alone and in combination with gentamicin, vancomycin or rifampicin against methicillin-resistant Staphylococcus aureus by time-kill curve methods. J Antimicrob Chemother 51:857–864. doi:10.1093/jac/dkg160

    Article  CAS  Google Scholar 

  39. Yu H, Tu C, Yip B et al (2011) Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob Agents Chemother 55:4918–4921. doi:10.1128/AAC.00202-11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank The Administrative Department of Science, Technology and Innovation, COLCIENCIAS, for resources and funding provided for the development of this research. Also to the the Mass Spectrometry Laboratory of the Industrial University of Santander by the collection of mass spectra of the synthetic peptide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Prada.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prada, Y.A., Guzmán, F., Rondón, P. et al. A New Synthetic Peptide with In vitro Antibacterial Potential Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Probiotics & Antimicro. Prot. 8, 134–140 (2016). https://doi.org/10.1007/s12602-016-9219-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-016-9219-9

Keywords

Navigation