Probiotics and Antimicrobial Proteins

, Volume 5, Issue 1, pp 26–35 | Cite as

Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1

  • Nicolás I. Torres
  • Katia Sutyak Noll
  • Shiqi Xu
  • Ji Li
  • Qingrong Huang
  • Patrick J. Sinko
  • Mónica B. Wachsman
  • Michael L. Chikindas


In the present study, the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2.4 mg subtilosin/g fiber, and loading efficiency was 31.6 %. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be non-toxic to human epidermal tissues using an in vitro human tissue model. Taking together these results, subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection.


Subtilosin Bacteriocin Antiviral Nanofiber 


  1. 1.
    Abriouel H, Franz C, Ben Omar N, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232CrossRefGoogle Scholar
  2. 2.
    Albiol Matanic V, Castilla V (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 23:382–389CrossRefGoogle Scholar
  3. 3.
    Andersen J, Osbakk S, Vorland L, Traavik T, Gutteberg T (2001) Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res 51:141–149CrossRefGoogle Scholar
  4. 4.
    Azwa A, Barton S (2009) Aspects of herpes simplex virus: a clinical review. J Fam Plann Reprod Health Care 35:237–242CrossRefGoogle Scholar
  5. 5.
    Babasaki K, Takao T, Shimonishi Y et al (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603Google Scholar
  6. 6.
    Baghian A, Kousouglas K (1993) Role of the Na+, K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn 1 mutation to syn+ (wild-type) phenotype. Virology 196:548–556CrossRefGoogle Scholar
  7. 7.
    Balla E, Dicks L, Du Toit M et al (2000) Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecium BFE 1071. Appl Environ Microbiol 66:1298–1304CrossRefGoogle Scholar
  8. 8.
    Belaid A, Aouni M, Khelifa R, Trabelsi A, Jemmali M, Hani K (2002) In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J Med Virol 66:229–234CrossRefGoogle Scholar
  9. 9.
    Berger J, Houff S (2008) Neurological complications of herpes simplex virus type 2 infection. Arch Neurol 65:596–600CrossRefGoogle Scholar
  10. 10.
    Celum C, Wald A, Lingappa J et al (2010) Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2. N Engl J Med 362:427–439CrossRefGoogle Scholar
  11. 11.
    Chilukuri S, Rosen T (2003) Management of acyclovir-resistant herpes simplex virus. Dermatol Clin 21:311–320Google Scholar
  12. 12.
    Choong K, Walker N, Apel A, Whitby M (2010) Aciclovir-resistant herpes keratitis. Clin Experiment Ophthalmol 38:309–313Google Scholar
  13. 13.
    Cintas L, Rodriguez J, Fernandez M et al (1995) Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl Environ Microbiol 61:2643–2648Google Scholar
  14. 14.
    Daher K, Selsted M, Lehrer R (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074Google Scholar
  15. 15.
    Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. J Inmunol Methods 89:271–277CrossRefGoogle Scholar
  16. 16.
    Duan B, Yuan X, Zhu Y et al (2006) A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur Polymer J 42:2013–2022CrossRefGoogle Scholar
  17. 17.
    Efstathiou S, Preston C (2005) Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111:108–119CrossRefGoogle Scholar
  18. 18.
    Fatahzadeh M, Schwartz R (2007) Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol 57:737–763CrossRefGoogle Scholar
  19. 19.
    Field H (2001) Herpes simplex virus antiviral drug resistance-current trends and future prospects. J Clin Virol 21:261–269CrossRefGoogle Scholar
  20. 20.
    Frasch H, Dotson G, Barbero A (2011) In vitro human epidermal penetration of 1-bromopropane. J Toxicol Environ Health A 74:1249–1260CrossRefGoogle Scholar
  21. 21.
    Gupta R, Warren T, Wald A (2007) Genital herpes. Lancet 370:2127–2137CrossRefGoogle Scholar
  22. 22.
    Håvard J (2009) Therapeutic approaches using host defense peptides to tackle herpes virus infections. Viruses 1:939–964CrossRefGoogle Scholar
  23. 23.
    Heunis T, Botes M, Dicks L (2010) Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics Antimicrob Prot 2:46–51CrossRefGoogle Scholar
  24. 24.
    Heunis T, Bshena O, Klumperman B et al (2011) Release of bacteriocins from nanofibers prepared with combinations of poly(D, L-lactide) (PDLLA) and poly(ethylene oxide) (PEO). Int J Mol Sci 12:2158–2173CrossRefGoogle Scholar
  25. 25.
    Heunis T, Dicks L (2010) Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol pii 510682Google Scholar
  26. 26.
    Hill C, McKinney E, Lowndes C et al (2009) Epidemiology of herpes simplex virus types 2 and 1 amongst men who have sex with men attending sexual health clinics in England and Wales: implications for HIV prevention and Management. Euro Surveill 14:article 19418Google Scholar
  27. 27.
    Hook E, Cannon R, Nahmias A et al (1992) Herpes simplex virus infection as a risk factor for human immunodeficiency virus infection. J Infect Dis 165:251–255CrossRefGoogle Scholar
  28. 28.
    Jenssen H, Hamill P, Hancock R (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511CrossRefGoogle Scholar
  29. 29.
    Johnston C, Saracino M, Kuntz S et al (2012) Standard-dose and high-dose daily antiviral therapy for short episodes of genital HSV-2 reactivation: three randomised, open-label, cross-over trials. Lancet 379:641–647CrossRefGoogle Scholar
  30. 30.
    Lehrer R, Daher K, Ganz T, Selsted M (1985) Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J Virol 54:467–472Google Scholar
  31. 31.
    Looker K, Garnett G, Schmid G (2008) An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull World Health Organ 86:805–812CrossRefGoogle Scholar
  32. 32.
    Marx R, Stein T, Entian K et al (2001) Structure of the Bacillus subtillis peptide antibiotic subtilosin A determined by 1H NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20:501–506CrossRefGoogle Scholar
  33. 33.
    Morfin F, Thouvenot D (2003) Herpes simplex virus resistance to antiviral drugs. J Clin Virol 26:29–37CrossRefGoogle Scholar
  34. 34.
    Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55:459–472CrossRefGoogle Scholar
  35. 35.
    Pongtharangkul T, Demirci A (2004) Evaluation of agar diffusion bioassay for nisin quantification. Appl Microbiol Biotechnol 65:268–272CrossRefGoogle Scholar
  36. 36.
    Schulte E, Sauerbrei A, Hoffmann D, Zimmer C, Hemmer B, Mühlau M (2010) Acyclovir resistance in herpes simplex encephalitis. Ann Neurol 67:830–833CrossRefGoogle Scholar
  37. 37.
    Serkedjieva J, Danova S, Ivanova I (2000) Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii. Appl Biochem Biotechnol 88:285–295CrossRefGoogle Scholar
  38. 38.
    Shin J, Cai G, Weinberg A et al (2001) Frequency of acyclovir-resistant herpes simplex virus in clinical specimens and laboratory isolates. J Clin Microbiol 39:913–917CrossRefGoogle Scholar
  39. 39.
    Shin Y, Hohman M, Brenner M et al (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78:1149–1151CrossRefGoogle Scholar
  40. 40.
    Steiner I, Kennedy P, Pachner A (2007) The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol 6:1015–1028CrossRefGoogle Scholar
  41. 41.
    Sutyak K, Anderson R, Dover S et al (2008) Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol 2008:540758CrossRefGoogle Scholar
  42. 42.
    Sutyak K, Wirawan R, Aroutcheva A et al (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074CrossRefGoogle Scholar
  43. 43.
    Talarico L, Castilla V, Rámirez J et al (2006) Synergistic in vitro interactions between (22S,23S)-3β-bromo-5α22,23-trihydroxystigmastan-6-one and foscarnet against herpes simples virus type 1. Chemotherapy 52:38–42CrossRefGoogle Scholar
  44. 44.
    Tamamura H, Otaka A, Murakami T et al (1996) Interaction of an anti-HIV peptide, T22, with gp120 and CD4. Biochem Biophys Res Commun 219:555–559CrossRefGoogle Scholar
  45. 45.
    Thennarasu S, Lee D, Poon A et al (2005) Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem Phys Lipids 137:38–51CrossRefGoogle Scholar
  46. 46.
    Todorov S, Wachsman M, Knoetze H et al (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4 V isolated from soybeans. Int J Antimicrob Agents 25:508–513CrossRefGoogle Scholar
  47. 47.
    van Velzen M, van Loenen F, Meesters R et al (2012) Latent acyclovir-resistant herpes simplex virus type 1 in trigeminal ganglia of immunocompetent individuals. J Infect Dis 205:1539–1543CrossRefGoogle Scholar
  48. 48.
    Wachinger M, Kleinschmidt A, Winder D et al (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79:731–740Google Scholar
  49. 49.
    Wachsman M, Castilla V, De Ruiz Holgado A et al (2003) Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir Res 58:17–24CrossRefGoogle Scholar
  50. 50.
    Wachsman M, Farías M, Takeda E et al (1999) Antiviral activity of enterocin CRL35 against herpesviruses. Int J Antimicrob Agents 12:293–299CrossRefGoogle Scholar
  51. 51.
    Wachsman M, López E, Ramírez J et al (2000) Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antiviral Chem Chemother 11:71–77Google Scholar
  52. 52.
    Whitley R, Roizman B (2001) Herpes simplex virus infections. The Lancet 357:1513–1518CrossRefGoogle Scholar
  53. 53.
    Yarin A, Koombhongse S, Reneker D (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846CrossRefGoogle Scholar
  54. 54.
    Yasin B, Pang M, Turner J et al (2000) Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Dis 19:187–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nicolás I. Torres
    • 1
  • Katia Sutyak Noll
    • 2
    • 4
  • Shiqi Xu
    • 2
  • Ji Li
    • 2
  • Qingrong Huang
    • 2
  • Patrick J. Sinko
    • 3
  • Mónica B. Wachsman
    • 1
  • Michael L. Chikindas
    • 2
  1. 1.Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.School of Environmental and Biological SciencesRutgers, The State University of New JerseyNew BrunswickUSA
  3. 3.Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New JerseyPiscatawayUSA
  4. 4.Kraft Foods, Inc.TarrytownUSA

Personalised recommendations