Advertisement

Probiotics and Antimicrobial Proteins

, Volume 5, Issue 1, pp 1–7 | Cite as

A Novel Isoform of the Hepatic Antimicrobial Peptide, Hepcidin (Hepc-CB1), from a Deep-Sea Fish, the Spinyjaw Greeneye Chlorophthalmus bicornis (Norman, 1939): Molecular Characterisation and Phylogeny

  • E. R. Chaithanya
  • Rosamma Philip
  • Naveen Sathyan
  • P. R. Anil Kumar
  • Swapna P. Antony
  • V. N. Sanjeevan
  • I. S. Bright Singh
Article

Abstract

Hepcidin is cysteine-rich short peptide of innate immune system of fishes, equipped to perform prevention and proliferation of invading pathogens like bacteria and viruses by limiting iron availability and activating intracellular cascades. Hepcidins are diverse in teleost fishes, due to the varied aquatic environments including exposure to pathogens, oxygenation and iron concentration. In the present study, we report a 87-amino acid (aa) preprohepcidin (Hepc-CB1) with a signal peptide of 24 aa, a prodomain of 39 aa and a bioactive mature peptide of 24 aa from the gill mRNA transcripts of the deep-sea fish spinyjaw greeneye, Chlorophthalmus bicornis. Molecular characterisation and phylogenetic analysis categorised the peptide to HAMP2-like group with a mature peptide of 2.53 kDa; a net positive charge (+3) and capacity to form β-hairpin-like structure configured by 8 conserved cysteines. The present work provides new insight into the mass gene duplication events and adaptive evolution of hepcidin isoforms with respect to environmental influences and positive Darwinian selection. This work reports a novel hepcidin isoform under the group HAMP2 from a non-acanthopterygian deep-sea fish, C. bicornis.

Keywords

Antimicrobial peptide Spinyjaw Chlorophthalmus bicornis HAMP Hepcidin 

Notes

Acknowledgments

The authors are grateful to the Centre for Marine Living Resources and Ecology (CMLRE) and Ministry of Earth Sciences (MoES), Govt. of India, for the research grant (MoES/10-MLR/2/2007) and scientific/technical support for the work. Thanks are due to the crew of the research vessel FORV Sagar Samapda for their wholehearted support during the sample collection and Mr. Vinu Jacob, Research scholar, Department of Marine biology Microbiology and Biochemistry, CUSAT, Kochi-16, for the assistance in the taxonomic identification of the fish.

References

  1. 1.
    Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function and applications. Biotechnol Adv 21:465–499. doi: 10.1016/S0734-9750(03)00077-6 CrossRefGoogle Scholar
  2. 2.
    Workenhe ST, Rise ML, Kibenge MJT, Kibenge FSB (2010) The fight between the teleost fish immune response and aquatic viruses. Mol Immunol 47(16):2525–2536. doi: 10.1016/j.molimm.2010.06.009 CrossRefGoogle Scholar
  3. 3.
    Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215CrossRefGoogle Scholar
  4. 4.
    Khandelia H, Kaznessis YN (2006) Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides’ structure: implications for peptide toxicity and activity. Peptides 27:1192–1200. doi: 10.1016/j.2005.10.022 CrossRefGoogle Scholar
  5. 5.
    Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248CrossRefGoogle Scholar
  6. 6.
    Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135(1):1–11. doi: 10.1016/j.clim.2009.12.004 CrossRefGoogle Scholar
  7. 7.
    Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374. doi: 10.1016/j.resmic.2011.02.005 CrossRefGoogle Scholar
  8. 8.
    Solstad T, Larsen AN, Seppola M, Jorgensen T (2008) Identification, cloning and expression analysis of a hepcidin cDNA of the Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 25(3):298–310. doi: 10.1016/j.fsi.2008.05.013 CrossRefGoogle Scholar
  9. 9.
    Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS lett 480(2–3):147–50. http://www.ncbi.nlm.nih.gov/pubmed/11034317
  10. 10.
    Singh B, Arora S, Agrawal P, Gupta SK (2011) Hepcidin: a novel peptide hormone regulating iron metabolism. Clin Chim Acta 412(11–12):823–830. doi: 10.1016/j.cca.2011.02.014 CrossRefGoogle Scholar
  11. 11.
    Hilton KB, Lambert LA (2008) Molecular evolution and characterization of hepcidin gene products in vertebrates. Gene 415:40–48. doi: 10.1016/j.gene.2008.02.016 CrossRefGoogle Scholar
  12. 12.
    Shike H, Shimizu C, Lauth X, Burns JC (2004) Organization and expression analysis of the zebrafish hepcidin gene, an antimicrobial peptide gene conserved among vertebrates. Dev Comp Immunol 28:747–754. doi: 10.1016/j.dci.2003.11.009 CrossRefGoogle Scholar
  13. 13.
    Pereiro P, Figueras A, Novoa B (2012) A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. Fish Shellfish Immunol 32(5):879–889. doi: 10.1016/j.fsi.2012.02.016 CrossRefGoogle Scholar
  14. 14.
    Yang M, Chen B, Cai JJ, Peng H, Yuan JJ, Ling-Cai, Wang KJ (2011) Molecular characterization of hepcidin AS-hepc2 and AS-hepc6 in black porgy (Acanthopagrus schlegelii): expression pattern responded to bacterial challenge and in vitro antimicrobial activity. Comp Biochem Physiol B 158(2):155–163. doi: 10.1016/j.cbpb.2010.11.003 CrossRefGoogle Scholar
  15. 15.
    Barnes AC, Trewin B, Snape N, Kvennefors ECE, Baiano JCF (2011) Two hepcidin-like antimicrobial peptides in Barramundi Lates calcarifer exhibit differing tissue tropism and are induced in response to lipopolysaccharide. Fish Shellfish Immunol 31(2):350–357. doi: 10.1016/j.fsi.2011.05.027 CrossRefGoogle Scholar
  16. 16.
    Masso-Silva J, Diamond G, Macias-Rodriguez M, Ascencio F (2011) Genomic organization and tissue-specific expression of hepcidin in the pacific mutton hamlet, Alphestes immaculatus (Breder, 1936). Fish Shellfish Immunol 31(6):1297–1302. doi: 10.1016/j.fsi.2011.10.007 CrossRefGoogle Scholar
  17. 17.
    Martin-Antonio B, Jime′nez-Cantizano RM, Salas-Leiton E, Infante C, Manchado M (2009) Genomic characterization and gene expression analysis of four hepcidin genes in the redbanded seabream (Pagrus auriga). Fish Shellfish Immunol 26:483–491. doi: 10.1016/j.fsi.2009.01.012 CrossRefGoogle Scholar
  18. 18.
    Wang K, Cai J–J, Cai L, Qu H-D, Yang M, Zhang M (2009) Cloning and expression of a hepcidin gene from a marine fish (Pseudosciaena crocea) and the antimicrobial activity of its synthetic peptide. Peptides 30:638–646. doi: 10.1016/j.peptides.2008.12.014 CrossRefGoogle Scholar
  19. 19.
    Cuesta A, Meseguer J, Esteban AM (2008) The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol Immunol 45:2333–2342. doi: 10.1016/j.molimm.2007.11.007 CrossRefGoogle Scholar
  20. 20.
    Rodrigues PNS, Vazquez-Dorado S, Neves JV, Wilson JM (2006) Dual function of fish hepcidin: response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Dev Comp Immunol 30:1156–1167. doi: 10.1016/j.dci.2006.02.005 CrossRefGoogle Scholar
  21. 21.
    Srinivasulu B, Syvitski R, Seo J, Mattatall NR, Knickle LC, Douglas SE (2008) Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder, Paralichthys olivaceus. Protein Expr Purif 61:36–44. doi: 10.1016/j.pep.2008.05.012 CrossRefGoogle Scholar
  22. 22.
    Huang P-H, Chen J-Y, Kuo C-M (2007) Three different hepcidins from tilapia, Oreochromis mossambicus: analysis of their expressions and biological functions. Mol Immunol 44(8):1922–1934. doi: 10.1016/j.molimm.2006.09.031 CrossRefGoogle Scholar
  23. 23.
    Xu Q, Cheng CHC, Hu P, Ye H, Chen Z, Cao L, Chen L et al (2008) Adaptive evolution of hepcidin genes in Antarctic notothenioid fishes. Mol Biol Evol 25(6):1099–1112. doi: 10.1093/molbev/msn056 CrossRefGoogle Scholar
  24. 24.
    Ganz T (2005) Hepcidin—a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Cl Ha 18(2):171–182. doi: 10.1016/j.beha.2004.08.020 CrossRefGoogle Scholar
  25. 25.
    Shi J, Camus AC (2006) Hepcidins in amphibians and fishes: antimicrobial peptides or iron-regulatory hormones? Dev Comp Immunol 30:746–755. doi: 10.1016/j.dci.2005.10.009 CrossRefGoogle Scholar
  26. 26.
    Chen J-Y, Lin W-J, Lin T-L (2009) A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides 30(9):1636–1642. doi: 10.1016/j.peptides.2009.06.009 CrossRefGoogle Scholar
  27. 27.
    Wang Y-D, Kung C-W, Chi S-C, Chen J-Y (2010) Inactivation of nervous necrosis virus infecting grouper (Epinephelus coioides) by epinecidin-1 and hepcidin 1–5 antimicrobial peptides, and downregulation of Mx2 and Mx3 gene expressions. Fish Shellfish Immunol 28(1):113–120. doi: 10.1016/j.fsi.2009.10.001 CrossRefGoogle Scholar
  28. 28.
    Ren H-L, Wang K-J, Zhou H-L, Yang M (2006) Cloning and organisation analysis of a hepcidin-like gene and cDNA from Japan sea bass, Lateolabrax japonicus. Fish Shellfish Immunol 21:221–227. doi: 10.1016/j.fsi.2005.10.011 CrossRefGoogle Scholar
  29. 29.
    Rajanbabu V, Chen J-Y (2011) Peptides The antimicrobial peptide, tilapia hepcidin 2–3, and PMA differentially regulate the protein kinase C isoforms, TNF- α and COX-2, in mouse RAW264. 7 macrophages. Peptides 32(2):333–341. doi: 10.1016/j.peptides.2010.11.004 CrossRefGoogle Scholar
  30. 30.
    Collins HL (2003) The role of iron in infections with intracellular bacteria. Immunol Lett 85(2):193–5. http://www.ncbi.nlm.nih.gov/pubmed/12527227
  31. 31.
    Jurado RL (1997) Iron, infections, and anemia of inflammation. Clin infect dis 25(4):888–95. http://www.ncbi.nlm.nih.gov/pubmed/9356804
  32. 32.
    Falzacappa MVV, Muckenthaler MU (2005) Hepcidin: iron-hormone and anti-microbial peptide. Gene 364:37–44. doi: 10.1016/j.gene.2005.07.020 CrossRefGoogle Scholar
  33. 33.
    Davis MP (2010) Evolutionary relationships of the Aulopiformes (Euteleostei: Cyclosquamata): a molecular and total evidence approach. In: Nelson JS, Schultze H-P, Wilson MVH (eds) Origin and Phylogenetic Interrelationships of Teleosts. Verlag Dr. Friedrich Pfeil, München, Germany, pp 431–470Google Scholar
  34. 34.
    Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276(11):7806–7810. doi: 10.1074/jbc.M008922200 CrossRefGoogle Scholar
  35. 35.
    Valore EV, Ganz T (2008) Posttranslational processing of hepcidin in human hepatocytes is mediated by the prohormone convertase furin. Blood Cell Mol Dis 40(1):132–138. doi: 10.1016/j.bcmd.2007.07.009 CrossRefGoogle Scholar
  36. 36.
    Hunter HN, Fulton DB, Ganz T, Vogel HJ (2002) The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 277(40):37597–37603. doi: 10.1074/jbc.M205305200 CrossRefGoogle Scholar
  37. 37.
    Lauth X, Babon JJ, Stannard JA, Singh S, Nizet V, Carlberg JM, Ostland VE et al (2005) Bass hepcidin synthesis, solution structure, antimicrobial activities and synergism, and in vivo hepatic response to bacterial infections. J Biol Chem 280(10):9272–9282. doi: 10.1074/jbc.M411154200 CrossRefGoogle Scholar
  38. 38.
    Padhi A, Verghese B (2007) Evidence for positive darwinian selection on the hepcidin gene of perciform and pleuronectiform fishes. Mol Div 11:119–130. doi: 10.1007/s11030-007-9066-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • E. R. Chaithanya
    • 1
  • Rosamma Philip
    • 1
  • Naveen Sathyan
    • 1
  • P. R. Anil Kumar
    • 1
  • Swapna P. Antony
    • 1
    • 3
  • V. N. Sanjeevan
    • 2
  • I. S. Bright Singh
    • 3
  1. 1.Department of Marine Biology, Microbiology and Biochemistry, School of Marine SciencesCochin University of Science and TechnologyKochiIndia
  2. 2.Centre for Marine Living Resources and EcologyKochiIndia
  3. 3.National Centre for Aquatic Animal Health (NCAAH)CUSATKochiIndia

Personalised recommendations