Advertisement

Probiotics and Antimicrobial Proteins

, Volume 4, Issue 4, pp 217–226 | Cite as

The Genus Lactobacillus: A Taxonomic Update

  • Elisa Salvetti
  • Sandra Torriani
  • Giovanna E. FelisEmail author
Article

Abstract

Lactic Acid Bacteria (LAB) are a functional group of microorganisms comprising Gram-positive, catalase negative bacteria that produce lactic acid as the major metabolic end-product of carbohydrate fermentation. Among LAB, Lactobacillus is the genus including a high number of GRAS species (Generally Recognized As Safe) and many strains are among the most important bacteria in food microbiology and human nutrition, due to their contribution to fermented food production or their use as probiotics. From a taxonomic point of view, the genus Lactobacillus includes at present (October 2012), 152 validly described species, and it belongs to the family Lactobacillaceae together with genus Pediococcus, with whom it is phylogenetically intermixed. The updated phylogenetic analysis based on 16S rRNA gene sequence revealed that the family is divided into 15 groups of three or more species, 4 couples and 10 single lines of descents. In addition, other taxonomically relevant information for Lactobacillus species was collected. This study aims at updating the taxonomy of the genus Lactobacillus, presenting the phylogenetic structure of the Lactobacillaceae and discussing the clusters as possible nuclei of genera to be described in the future. It is expected that scientists and producers in the field of probiotics could benefit from information reported here about the correct identification procedures and nomenclature of beneficial strains of lactobacilli.

Keywords

Lactobacillus Taxonomy 16S rRNA Phylogeny 

Notes

Acknowledgments

Authors are grateful to Yakult Europe BV that supported ES and Prof. Franco Dellaglio for his contribution and suggestions. Authors would like to thank also the anonymous reviewer, whose comments and suggestions improved the quality of the present paper.

Conflict of interest

The authors declare that they have not competing interest.

Supplementary material

12602_2012_9117_MOESM1_ESM.docx (97 kb)
Table 2S Relevant taxonomic data of Lactobacillus species according to their group compositions (Fig. 1): L. delbrueckii- group (Table 2.1S), L. salivarius-group (Table 2.2S), L. reuteri-group (Table 2.3S), L. buchneri-group (Table 2.4S), L. alimentarius-group (Table 2.5S), L. brevis-group (Table 2.6S), L. collinoides-group (Table 2.7S), L. fructivorans-group (Table 2.8S), L. plantarum-group (Table 2.9S), L. sakei-group (Table 2.10S), L. casei-group (Table 2.11S), L. coryniformis-group (Table 2.12S), L. manihotivorans-group (Table 2.13S), L. perolens-group (Table 2.14S), L. vaccinostercus-group (Table 2.15S), couples (Table 2.16S) and single lines of descent (Table 2.17S). Taxonomic data include full species name, type of glucose fermentation (A, B, C), GC content, aerobic/anaerobic patterns, cell wall composition, lactic acid isomer produced, motility, production of ammonia and acetoin, NaCl tolerance, temperature and pH growth range, and source of isolation. (DOCX 97 kb)
12602_2012_9117_MOESM2_ESM.docx (716 kb)
Fig. 3S The phylogenetic structure of Lactobacillus groups based on 16S rRNA sequence analysis and their species composition: L. delbrueckii-group (3.1S), L. salivarius-group (3.2S), L. reuteri-group (3.3S), L. buchneri-group (3.4S), L. alimentarius-group (3.5S), L. brevis-group (3.6S), L. collinoides-group (3.7S), L. fructivorans-group (3.8S), L. plantarum-group (3.9S), L. sakei-group (3.10S), L. casei-group (3.11S), L. coryniformis-group (3.12S), L. manihotivorans-group (3.13S), L. perolens-group (3.14S), L. vaccinostercus-group (3.15S). Each phylogenetic tree was inferred using the same parameters of tree in Fig. 1. For each species, accession numbers is indicated (DOCX 716 kb)

References

  1. 1.
    Goh YJ, Klaenhammer TR (2009) Genomic features of Lactobacillus species. Front Biosci 14:1362–1386. doi: 10.2741/3313 CrossRefGoogle Scholar
  2. 2.
    Klaenhammer TR, de Vos WM (2011) An incredible scientific journey. The evolutionary tale of the lactic acid bacteria. In: Ledeboer A, Hugenholtz J, Kok J, Konings W, Wouters J (eds) The 10th LAB symposium. Thirty years of research on lactic acid bacteria. 24 Media Labs, pp 1–11Google Scholar
  3. 3.
    Cai Y, Pang H, Kitahara M, Ohkuma M (2012) Lactobacillus nasuensis sp. nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus. Int J Syst Evol Microbiol 62:1140–1144. doi: 10.1099/ijs.0.031781-0 CrossRefGoogle Scholar
  4. 4.
    Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Blackie Academic & Professional, London, pp 19–54CrossRefGoogle Scholar
  5. 5.
    Brooijmans RJW, de Vos WM, Hugenholtz J (2009) The electron transport chains of Lactobacillus plantarum WCFS1. Appl Environ Microbiol 75:3580–3585. doi: 10.1128/AEM.00147-09 CrossRefGoogle Scholar
  6. 6.
    Hammes WP, Hertel C (2009) Genus I. Lactobacillus Beijerink, 1901. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, Berlin, pp 465–510Google Scholar
  7. 7.
    Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–125. doi: 10.1016/S0168-1605(98)00049-X CrossRefGoogle Scholar
  8. 8.
    Orla-Jensen S (1919) The lactic acid bacteria. Fred Host and Son, CopenhagenGoogle Scholar
  9. 9.
    Kandler O, Weiss N (1986) Genus Lactobacillus Beijerinck. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1209–1234Google Scholar
  10. 10.
    Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370. doi: 10.1080/1040-840291046759 CrossRefGoogle Scholar
  11. 11.
    Pot B, Ludwig W, Kersters K, Schleifer KH (1994) Taxonomy of lactic acid bacteria. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic & Professional, London, pp 13–90CrossRefGoogle Scholar
  12. 12.
    Collins MD, Rodrigues UM, Ash C, Aguirre M, Farrow JAE, Martinez-Murcia A, Phillips BA, Williams AM, Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12. doi: 10.1111/j.1574-6968.1991.tb04313.x CrossRefGoogle Scholar
  13. 13.
    Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438Google Scholar
  14. 14.
    Hammes WP, Hertel C (2003) The genera Lactobacillus and Carnobacterium. In: Dworkin M (ed) The prokaryotes. Release 3.15Google Scholar
  15. 15.
    Dellaglio F, Felis GE (2005) Taxonomy of lactobacilli and bifidobacteria. In: Tannock GW (ed) Probiotics and prebiotics: scientific aspects. Caister Academic Press, Norfolk, pp 25–50Google Scholar
  16. 16.
    Felis GE, Dellaglio F (2007) Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8:44–61Google Scholar
  17. 17.
    Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin EV, Pavlov A, Pavlova A, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin L, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer TR, Richardson P, Kozyavkin S, Wiemer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616. doi: 10.1073/pnas.0607117103 CrossRefGoogle Scholar
  18. 18.
    Klaenhammer TR, Altermann E, Pfeiler E, Buck BL, Goh Y-J, O’Flaherty S, Barrangou R, Duong T (2008) Functional genomics of probiotic lactobacilli. J Clin Gastroenterol 42:S160–S162. doi: 10.1097/MCG.0b013e31817da140 CrossRefGoogle Scholar
  19. 19.
    O’Sullivan O, O’Callaghan J, Sangrador-Vegas A, McAuliffe O, Slattery L, Kaleta P, Callanan M, Fitzgerald GF, Ross RP, Beresford T (2009) Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiol 9:50. doi: 10.1186/1471-2180-9-50 CrossRefGoogle Scholar
  20. 20.
    Canchaya C, Claesson MJ, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology 152:3185–3196. doi: 10.1099/mic.0.29140-0 CrossRefGoogle Scholar
  21. 21.
    Claesson MJ, van Sinderen D, O’Toole PW (2007) The genus Lactobacillus—a genomic basis for understanding its diversity. FEMS Microbiol Lett 269:22–28. doi: 10.1111/j.1574-6968.2006.00596.x CrossRefGoogle Scholar
  22. 22.
    Claesson MJ, van Sinderen D, O’Toole PW (2008) Lactobacillus phylogenomics—towards a reclassification of the genus. Int J Syst Evol Microbiol 58:2945–2954. doi: 10.1099/ijs.0.65848-0 CrossRefGoogle Scholar
  23. 23.
    Kant R, Blom J, Palva A, Siezen RJ, de Vos WM (2011) Comparative genomics of Lactobacillus. Microb Biotechnol 4:323–332. doi: 10.1111/j.1751-7915.2010.00215.x CrossRefGoogle Scholar
  24. 24.
    Zhang ZG, Ye ZQ, Yu L, Shi P (2011) Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol Biol 11:1. doi: 10.1186/1471-2148-11-1 CrossRefGoogle Scholar
  25. 25.
    Lukjancenko O, Ussery DW, Wassenaar TM (2012) Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol 63:651–673. doi: 10.1007/s00248-011-9948-y CrossRefGoogle Scholar
  26. 26.
    Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food London, Ontario, Canada, April 30 and May 1, 2002. http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf
  27. 27.
    Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I, Romond M-B, Entenza J, Moreillon P, Wind R, Knol J, Wiertz E, Pot B, Vaughan EE, Kahlmeter G, Goossens H (2008) Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. Trends Food Sci Technol 19:102–114. doi: 10.1016/j.tifs.2007.07.013 CrossRefGoogle Scholar
  28. 28.
    Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  29. 29.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  30. 30.
    Waterhouse AW, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi: 10.1093/bioinformatics/btp033 CrossRefGoogle Scholar
  31. 31.
    Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academy, New York, pp 21–132Google Scholar
  32. 32.
    Tamura K (1992) The rate and pattern of nucleotide substitutions in Drosophila mitochondrial DNA. Mol Biol Evol 9:814–825Google Scholar
  33. 33.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  34. 34.
    Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  35. 35.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefGoogle Scholar
  36. 36.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  37. 37.
    Salvetti E, Felis GE, Dellaglio F, Castioni A, Torriani S, Lawson PA (2011) Reclassification of Lactobacillus catenaformis (Eggerth 1935) Moore and Holdeman 1970 and Lactobacillus vitulinus Sharpe et al., 1973 as Eggerthia catenaformis gen. nov. comb. nov. and Kandleria vitulina gen. nov. comb. nov., respectively. Int J Syst Evol Microbiol 61:2520–2524. doi: 10.1099/ijs.0.029231-0 CrossRefGoogle Scholar
  38. 38.
    Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi: 10.1093/molbev/msj030 CrossRefGoogle Scholar
  39. 39.
    Leisner JJ, Vancanneyt M, Goris J, Christensen H, Rusul G (2000) Description of Paralactobacillus selangorensis gen. nov., sp. nov., a new lactic acid bacterium isolated from chili bo, a Malaysian food ingredient. Int J Syst Evol Microbiol 50:19–24CrossRefGoogle Scholar
  40. 40.
    Haakensen MC, Pittet VP, Ziola B (2011) Reclassification of Paralactobacillus selangorensis (Leisner et al., 2000) as Lactobacillus selangorensis comb. nov. Int J Syst Evol Microbiol 61:2979–2983. doi: 10.1099/ijs.0.027755-0 CrossRefGoogle Scholar
  41. 41.
    Jakava-Viljanen M, Murros A, Palva A, Björkroth KJ (2008) Lactobacillus sobrius Konstantinov et al., 2006 is a later synonym of Lactobacillus amylovorus Nakamura 1981. Int J Syst Evol Microbiol 58:910–913. doi: 10.1099/ijs.0.65432-0 CrossRefGoogle Scholar
  42. 42.
    Judicial Commission of the International Committee on Systematics of Bacteria (2008) The type strain of Lactobacillus casei is ATCC 393, ATCC 334 cannot serve as the type because it represents a different taxon, the name Lactobacillus paracasei and its subspecies names are not rejected and the revival of the name ‘Lactobacillus zeae’ contravenes Rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. Opinion 82. Int J Syst Evol Microbiol 58:1764–1765. doi: 10.1099/ijs.0.2008/005330-0 CrossRefGoogle Scholar
  43. 43.
    Haakensen MC, Dobson CM, Hill JE, Ziola B (2009) Reclassification of Pediococcus dextrinicus (Coster and White 1964) Back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. Int J Syst Evol Microbiol 59:615–621. doi: 10.1099/ijs.0.65779-0 CrossRefGoogle Scholar
  44. 44.
    Pang H, Kitahara M, Tang Z, Wang Y, Quin G, Okuma M, Cai Y (2012) Reclassification of Lactobacillus kimchii and Lactobacillus bobalius as a later subjective synonym of Lactobacillus paralimentarius. Int J Syst Evol Microbiol 62:2383–2387. doi: 10.1099/ijs.0.035329-0 CrossRefGoogle Scholar
  45. 45.
    Schleifer KH, Ludwig W (1995) Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18:461–467CrossRefGoogle Scholar
  46. 46.
    Pot B, Coenye T, Kersters K (1997) The taxonomy of microorganisms used as probiotics with special focus on enterococci, lactococci and lactobacilli. Microecol Therapy 26:11–25Google Scholar
  47. 47.
    Holzapfel WH, Hebeber P, Geisen R, Björkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:S365–S373Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Elisa Salvetti
    • 1
  • Sandra Torriani
    • 1
  • Giovanna E. Felis
    • 1
    Email author
  1. 1.Food Microbiology Laboratory, Department of BiotechnologyUniversity of VeronaVeronaItaly

Personalised recommendations