Probiotics and Antimicrobial Proteins

, Volume 2, Issue 1, pp 46–51 | Cite as

Encapsulation of Lactobacillus plantarum 423 and its Bacteriocin in Nanofibers

Article

Abstract

Plantaricin 423, produced by Lactobacillus plantarum 423, was encapsulated in nanofibers that were produced by the electrospinning of 18% (w/v) polyethylene oxide (200 000 Da). The average diameter of the nanofibers was 288 nm. Plantaricin 423 activity decreased from 51 200 AU/ml to 25 600 AU/ml and from 204 800 AU/ml to 51 200 AU/ml after electrospinning, as determined against Lactobacillus sakei DSM 20017 and Enterococcus faecium HKLHS, respectively. Cells of L. plantarum 423 encapsulated in nanofibers decreased from 2.3 × 1010 cfu/ml before electrospinning to 4.7 × 108 cfu/ml thereafter. Cells entrapped in the nanofibers continued to produce plantaricin 423. This is the first report on the encapsulation of a bacteriocin and cells of L. plantarum in nanofibers. The method may be used to design a drug delivery system for bacteriocins and the encapsulation of probiotic lactic acid bacteria. The technology is currently being optimized.

Keywords

Encapsulation Nanofibers Bacteriocins Bacteria 

Notes

Acknowledgments

Cipla Medpro (Pty) Ltd and the National Research Foundation, South Africa, for funding the research.

References

  1. 1.
    Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621CrossRefGoogle Scholar
  2. 2.
    Alterman E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TD (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Nat Acad Sci (USA) 102:3906–3912CrossRefGoogle Scholar
  3. 3.
    Botes M, Van Reenen CA, Dicks LMT (2008) Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with milk formulations as substrate. Int J Food Microbiol 128:362–370CrossRefGoogle Scholar
  4. 4.
    Caridi A (2002) Selection of Escherichia coli-inhibiting strains of Lactobacillus paracasei subsp. paracasei. J Ind Microbiol Biotechnol 29:303–308CrossRefGoogle Scholar
  5. 5.
    Chew SJ, Wen J, Yim EKF, Leong KW (2005) Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017–2024CrossRefGoogle Scholar
  6. 6.
    De Kwaadsteniet M, Ten Doeschate K, Dicks LMT (2009) Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett Appl Microbiol 48:65–70CrossRefGoogle Scholar
  7. 7.
    De Kwaadsteniet M, Van Reenen CA, Dicks LMT (2009b) Evaluation of nisin F in the treatment of subcutaneous skin infections as monitored by using a bioluminescent strain of Staphylococcus aureus. Prob Antimicrob Prot. doi:10.1007/s12602-009-9017-8
  8. 8.
    De Vriese MC, Vaughan EE, Kleerebezem M, de Vos WM (2006) Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028CrossRefGoogle Scholar
  9. 9.
    De Vuyst L, Vandamme EJ (1994) Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: properties, biosynthesis, fermentation and application. In: de Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria. Chapman and Hall, USA, pp 151–221Google Scholar
  10. 10.
    Franz CMAP, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24CrossRefGoogle Scholar
  11. 11.
    Gensheimer M, Becker M, Brandis-Heep A, Wendorff JH, Thauer RK, Greiner A (2007) Novel biohybrid materials by electrospinning: nanofibers of poly(ethylene oxide) and living bacteria. Adv Mater 19:2480–2482CrossRefGoogle Scholar
  12. 12.
    Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide amphiphile nanofibers. Science 294:1684–1688CrossRefGoogle Scholar
  13. 13.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their application in nanocomposites. Comp Sci Technol 63:2223–2253CrossRefGoogle Scholar
  14. 14.
    Ivanova I, Miteva V, Stefanova TS, Pantev A, Budakov I, Danova S, Moncheva P, Nikolova I, Dousset X, Boyaval P (1998) Characterization of a bacteriocin produced by Streptococcus thermophilus 81. Int J Food Microbiol 42:147–158CrossRefGoogle Scholar
  15. 15.
    Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64CrossRefGoogle Scholar
  16. 16.
    Kim TG, Lee DS, Park TG (2007) Controlled protein release from electrospun biodegradable fiber mesh composed of poly(ε-caprolactone) and poly(ethylene oxide). Int J Pharm 338:276–283CrossRefGoogle Scholar
  17. 17.
    Kleerebezem M, Boekhorst J, Van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Lankhorst RMK, Bron PA, Hoffer SM, Groot MNN, Kerkhoven R, De Vries M, Ursing B, De Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Nat Acad Sci USA 100(4):1990–1995CrossRefGoogle Scholar
  18. 18.
    Kokai-Kun JF, Walsh SM, Chanturiya T, Mond JJ (2003) Lysostaphin cream eradicates Staphylococcus aureus nasal colonization in a cotton rat model. Antimicrob Agents Chemother 47:1589–1597CrossRefGoogle Scholar
  19. 19.
    Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54:648–653CrossRefGoogle Scholar
  20. 20.
    Li Y, Jiang H, Zhu K (2008) Encapsulation and controlled release of lysozyme from electrospun poly(ε-caprolactone)/poly(ethylene glycol) non-woven membranes by formation of lysozyme-oleate complexes. J Mater Sci Mater Med 19:827–832CrossRefGoogle Scholar
  21. 21.
    Liang D, Hsiao BJ, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Revs 59:1392–1412CrossRefGoogle Scholar
  22. 22.
    Mare L, Wolfaardt GM, Dicks LMT (2006) Adhesion of Lactobacillus plantarum 423 and Lactobacillus salivarius 241 to the intestinal tract of piglets, as recorded with fluorescent in situ hybridisation (FISH) and production of plantaricin 423 by cells colonised to the ileum. J Appl Microbiol 100:838–845CrossRefGoogle Scholar
  23. 23.
    Maretschek S, Greiner A, Kissel T (2008) Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J Control Release 127:180–187CrossRefGoogle Scholar
  24. 24.
    Messi P, Bondi M, Sabia C, Battini R, Manicardi G (2001) Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int J Food Microbiol 64:193–198CrossRefGoogle Scholar
  25. 25.
    Nagai Y, Unswoth LD, Koutospoulos S, Zhang S (2006) Slow release of molecules in self–assembling peptide nanofiber scaffold. J Control Release 115:18–25CrossRefGoogle Scholar
  26. 26.
    Pender MJ, Sneddon LG (2000) An efficient template synthesis of aligned boron carbide nanofibers using a single-source molecular precursor. Chem Mater 12:280–283CrossRefGoogle Scholar
  27. 27.
    Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet A-C, Zwahlen M-C, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schnell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Nat Acad Sci USA 101:2512–2517CrossRefGoogle Scholar
  28. 28.
    Ramiah K, Van Reenen CA, Dicks LMT (2007) Expression of the mucus adhesion genes mub and mapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423 monitored with real-time PCR. Int J Food Microbiol 116:405–409CrossRefGoogle Scholar
  29. 29.
    Ramiah K, Ten Doeschate K, Smith R, Dicks LMT (2009) Safety assessment of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA determined in trials with Wistar rats. Prob Antimicrob Prot 1:15–23CrossRefGoogle Scholar
  30. 30.
    Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215CrossRefGoogle Scholar
  31. 31.
    Sambrook JE, Fritsch F, Maniatis J (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  32. 32.
    Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol 7:158–164CrossRefGoogle Scholar
  33. 33.
    Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434CrossRefGoogle Scholar
  34. 34.
    Tahara T, Kanatani K (1997) Isolation, partial characterization of crispacin A, a cell-associated bacteriocin produced by Lactobacillus crispatus JCM 2009. FEMS microbiol Letts 147:287–290CrossRefGoogle Scholar
  35. 35.
    Tan EPS, Lim CT (2004) Physical properties of a single polymeric nanofiber. Appl Phys Letts 84(9):1603–1605CrossRefGoogle Scholar
  36. 36.
    Taylor GI (1969) Electrically driven jets. Proc Royal Soc Lond A 313:453–475CrossRefGoogle Scholar
  37. 37.
    Todorov SD, Dicks LMT (2005) Lactobacillus plantarum isolated from molasses produces bacteriocins active against gram-negative bacteria. Enz Microb Technol 36:318–326CrossRefGoogle Scholar
  38. 38.
    Todorov SD, Dicks LMT (2005) Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. J Basic Microbiol 45:312–322CrossRefGoogle Scholar
  39. 39.
    Van Reenen CA, Dicks LMT, Chikindas ML (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84:1131–1137CrossRefGoogle Scholar
  40. 40.
    Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90(9):4836–4846CrossRefGoogle Scholar
  41. 41.
    Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231CrossRefGoogle Scholar
  42. 42.
    Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9:349–354CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations