Probiotics and Antimicrobial Proteins

, Volume 1, Issue 2, pp 113–120 | Cite as

Detection and Specific Enumeration of Multi-Strain Probiotics in the Lumen Contents and Mucus Layers of the Rat Intestine After Oral Administration

  • Hee Ji Lee
  • David A. Orlovich
  • John R. Tagg
  • J. Paul Fawcett


Although the detection of viable probiotic bacteria following their ingestion and passage through the gastrointestinal tract (GIT) has been well documented, their mucosal attachment in vivo is more difficult to assess. In this study, we investigated the survival and mucosal attachment of multi-strain probiotics transiting the rat GIT. Rats were administered a commercial mixture of the intestinal probiotics Lactobacillus acidophilus LA742, Lactobacillus rhamnosus L2H and Bifidobacterium lactis HN019 and the oral probiotic Streptococcus salivarius K12 every 12 h for 3 days. Intestinal contents, mucus and faeces were tested 6 h, 3 days and 7 days after the last dose by strain-specific enumeration on selective media and by denaturing gradient gel electrophoresis. At 6 h, viable cells and DNA corresponding to all four probiotics were detected in the faeces and in both the lumen contents and mucus layers of the ileum and colon. Viable probiotic cells of B. lactis and L. rhamnosus were detected for 7 days and L. acidophilus for 3 days after the last dose. B. lactis and L. rhamnosus persisted in the ileal mucus and colon contents, whereas the retention of L. acidophilus appeared to be relatively higher in colonic mucus. No viable cells of S. salivarius K12 were detected in any of the samples at either day 3 or 7. The study demonstrates that probiotic strains of intestinal origin but not of oral origin exhibit temporary colonisation of the rat GIT and that these strains may have differing relative affinities for colonic and ileal mucosa.


Probiotics Viability Mucosal attachment Specific enumeration 



This research was financially supported by a Ph.D. grant from the School of Pharmacy, University of Otago. We are grateful to Dr Philip A. Wescombe and Ms. Vidya Kulkarni of BLIS Technologies Ltd., Centre for Innovation, University of Otago, for their assistance in preparing the antibiotic-resistant probiotic cells and for making antibiotic-supplemented media, respectively.


  1. 1.
    Ahlroos T, Tynkkynen S (2009) Quantitative strain-specific detection of Lactobacillus rhamnosus GG in human faecal samples by real-time PCR. J Appl Microbiol 106(2):506–514CrossRefPubMedGoogle Scholar
  2. 2.
    Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T et al (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65(1):351–354PubMedGoogle Scholar
  3. 3.
    Barrow PA, Brooker BE, Fuller R, Newport MJ (1980) The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine. J Appl Bacteriol 48(1):147–154PubMedGoogle Scholar
  4. 4.
    Burton JP, Chilcott CN, Tagg JR (2005) The rationale and potential for the reduction of oral malodour using Streptococcus salivarius probiotics. Oral Dis 11(Suppl 1):29–31CrossRefPubMedGoogle Scholar
  5. 5.
    Burton J, Wescombe PA, Moore CJ, Chilcott CN, Tagg JR (2006) Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol 72(4):3050–3053CrossRefPubMedGoogle Scholar
  6. 6.
    Chen YY, Weaver CA, Burne RA (2000) Dual functions of Streptococcus salivarius urease. J Bacteriol 182(16):4667–4669CrossRefPubMedGoogle Scholar
  7. 7.
    Coconnier MH, Bernet M, Kernéis S, Chauvière G, Fourniat J, Servin AL (1993) Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol Lett 110(3):299–305CrossRefPubMedGoogle Scholar
  8. 8.
    Conway PL, Gorbach SL, Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci 70(1):1–12PubMedGoogle Scholar
  9. 9.
    FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada, 30 April and 1 May, 2002. Accessed 4 July 2009
  10. 10.
    Firmesse O, Mogenet A, Bresson JL, Corthier G, Furet JP (2008) Lactobacillus rhamnosus R11 consumed in a food supplement survived human digestive transit without modifying microbiota equilibrium as assessed by real-time polymerase chain reaction. J Mol Microbiol Biotechnol 14(1–3):90–99CrossRefPubMedGoogle Scholar
  11. 11.
    Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470CrossRefPubMedGoogle Scholar
  12. 12.
    Gardiner GE, Casey PG, Casey G, Lynch PB, Lawlor PG, Hill C et al (2004) Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl Environ Microbiol 70(4):1895–1906CrossRefPubMedGoogle Scholar
  13. 13.
    Goossens DA, Jonkers DM, Russel MG, Stobberingh EE, Stockbrügger RW (2006) The effect of a probiotic drink with Lactobacillus plantarum 299v on the bacterial composition in faeces and mucosal biopsies of rectum and ascending colon. Aliment Pharmacol Ther 23(2):255–263CrossRefPubMedGoogle Scholar
  14. 14.
    Gopal PK, Prasad J, Smart J, Gill HS (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67(3):207–216CrossRefPubMedGoogle Scholar
  15. 15.
    He F, Ouwehan AC, Hashimoto H, Isolauri E, Benno Y, Salminen S (2001) Adhesion of Bifidobacterium spp. to human intestinal mucus. Microbiol Immunol 45(3):259–262PubMedGoogle Scholar
  16. 16.
    Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis in’t Veld JH (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41(2):85–101CrossRefPubMedGoogle Scholar
  17. 17.
    Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol Lett 167(2):185–189CrossRefPubMedGoogle Scholar
  18. 18.
    Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 7(1–2):149–163PubMedGoogle Scholar
  19. 19.
    Mattila-Sandholm T, Mättö J, Saarela M (1999) Lactic acid bacteria with health claims-interactions and interference with gastrointestinal flora. Int Dairy J 9(1):25–35CrossRefGoogle Scholar
  20. 20.
    Montesi A, García-Albiach R, Pozuelo MJ, Pintado C, Goñi I, Rotger R (2005) Molecular and microbiological analysis of caecal microbiota in rats fed with diets supplemented either with prebiotics or probiotics. Int J Food Microbiol 98(3):281–289CrossRefPubMedGoogle Scholar
  21. 21.
    Morelli L, Garbagna N, Rizzello F, Zonenschain D, Grossi E (2006) In vivo association to human colon of Lactobacillus paracasei B21060: map from biopsies. Dig Liver Dis 38(12):894–898CrossRefPubMedGoogle Scholar
  22. 22.
    O’Shea EF, Gardiner GE, O’Connor PM, Mills S, Ross RP, Hill C (2009) Characterization of enterocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract. FEMS Microbiol Lett 291(1):24–34CrossRefPubMedGoogle Scholar
  23. 23.
    Ouwehand AC, Salminen S, Tölkkö S, Roberts P, Ovaska J, Salminen E (2002) Resected human colonic tissue: new model for characterizing adhesion of lactic acid bacteria. Clin Diagn Lab Immunol 9(1):184–186PubMedGoogle Scholar
  24. 24.
    Rambaut A (1996–2002) SE-AL sequence alignment editor, v 2.0a11. Department of Zoology, University of Oxford, OxfordGoogle Scholar
  25. 25.
    Ross KF, Ronson CW, Tagg JR (1993) Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl Environ Microbiol 59(7):2014–2021PubMedGoogle Scholar
  26. 26.
    Salminen S, Laine M, von Wright A, Vuopio-varkila J, Korhonen T, Mattila-Sandholm T (1996) Development of selection criteria for probiotic strains to assess their potential in functional food. A nordic and European approach. Biosci Microflora 2(1):23–28Google Scholar
  27. 27.
    Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR et al (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80(Suppl 1):S147–S171CrossRefPubMedGoogle Scholar
  28. 28.
    Sarem-Damerdji L, Sarem F, Marchal L, Nicolas JP (1995) In vitro colonization ability of human colon mucosa by exogenous Lactobacillus strains. FEMS Microbiol Lett 131(2):133–137CrossRefPubMedGoogle Scholar
  29. 29.
    Saulnier DM, Gibson GR, Kolida S (2008) In vitro effects of selected synbiotics on the human faecal microbiota composition. FEMS Microbiol Ecol 66(3):516–527CrossRefPubMedGoogle Scholar
  30. 30.
    Sheehan VM, Sleator RD, Hill C, Fitzgerald GF (2007) Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology 153(10):3563–3571CrossRefPubMedGoogle Scholar
  31. 31.
    Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G, Lynch PB et al (2001) Market potential for probiotics. Am J Clin Nutr 73(Suppl 2):476S–483SPubMedGoogle Scholar
  32. 32.
    Su P, Henriksson A, Tandianus JE, Park JH, Foong F, Dunn NW (2005) Detection and quantification of Bifidobacterium lactis LAFTI B94 in human faecal samples from a consumption trial. FEMS Microbiol Lett 244(1):99–103CrossRefPubMedGoogle Scholar
  33. 33.
    Swofford D (2001) PAUP*. Phylogenetic analysis using parsimony (*and other methods), v 4.0b10. Sinauer Associates, SunderlandGoogle Scholar
  34. 34.
    Tagg JR, Dierksen KP (2003) Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol 21(5):217–223CrossRefPubMedGoogle Scholar
  35. 35.
    Tannock GW, Szylit O, Duval Y, Raibaud P (1982) Colonization of tissue surfaces in the gastrointestinal tract of gnotobiotic animals by lactobacillus strains. Can J Microbiol 28(10):1196–1198PubMedCrossRefGoogle Scholar
  36. 36.
    Temmerman R, Masco L, Vanhoutte T, Huys G, Swings J (2003) Development and validation of a nested-PCR-denaturing gradient gel electrophoresis method for taxonomic characterization of bifidobacterial communities. Appl Environ Microbiol 69(11):6380–6385CrossRefPubMedGoogle Scholar
  37. 37.
    Tuohy KM, Pinart-Gilberga M, Jones M, Hoyles L, McCartney AL, Gibson GR (2007) Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora. J Appl Microbiol 102(4):1026–1032PubMedGoogle Scholar
  38. 38.
    Tuomola EM, Ouwehand AC, Salminen SJ (1999) Human ileostomy glycoproteins as a model for small intestinal mucus to investigate adhesion of probiotics. Lett Appl Microbiol 28(3):159–163CrossRefPubMedGoogle Scholar
  39. 39.
    Upton M, Tagg JR, Wescombe P, Jenkinson HF (2001) Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183(13):3931–3938CrossRefPubMedGoogle Scholar
  40. 40.
    Ventura M, Reniero R, Zink R (2001) Specific identification and targeted characterization of Bifidobacterium lactis from different environmental isolates by a combined multiplex-PCR approach. Appl Environ Microbiol 67(6):2760–2765CrossRefPubMedGoogle Scholar
  41. 41.
    Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K et al (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66(1):297–303CrossRefPubMedGoogle Scholar
  42. 42.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703PubMedGoogle Scholar
  43. 43.
    Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal sample reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64(10):3854–3859PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Hee Ji Lee
    • 1
  • David A. Orlovich
    • 2
  • John R. Tagg
    • 3
    • 4
  • J. Paul Fawcett
    • 1
  1. 1.School of PharmacyUniversity of OtagoDunedinNew Zealand
  2. 2.Department of BotanyUniversity of OtagoDunedinNew Zealand
  3. 3.Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
  4. 4.BLIS Technologies Ltd., Centre For InnovationUniversity of OtagoDunedinNew Zealand

Personalised recommendations