Skip to main content
Log in

Salinity Biases and the Variability of the Atlantic Meridional Overturning Circulation in GFDL-CM3

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

The variability of the Atlantic Meridional Overturning Circulation (AMOC) and the Meridional Freshwater Transport (Mov) at 24°N, 11°S, and 30°S, simulated with the GFDL-CM3 model under the historical (1860–2005) and RCP 4.5 and 8.5 scenarios (2006–2100) are examined. The results are compared with the climatology and observations in the search for salinity biases that would compromise the accuracy of the state of the future climate predicted by this model. The AMOC wavelet analysis shows a predominant decadal variability at 24°N, whereas the annual signal is more prominent in the South Atlantic. The Mov magnitude varies considerably among the latitudes: increasing at 24°N, rather stable at 11°S and decreasing at 30°S. Such a pattern is followed by an AMOC weakening regardless of the latitude until the end of the 21st century, indicating that a reduction in Mov in the southern South Atlantic and an increase in the North Atlantic are potential drivers of the AMOC destabilization. Both model and observations agree on the stability of the circulation, even though the model projects a stronger AMOC than the latter. Besides the AMOC weakening, a shoaling of its upper limb is also observed. Salinity biases were found mostly in the South Atlantic in the upper 1000 m of the water column, with the model results significantly deviating from the observations and climatology in the mid-Atlantic, especially at 30°S. Possible causes for the abovementioned results, including potential drivers for salinity biases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adcroft A, Anderson W, Balaji V, Blanton C, Bushuk M, Dufour C, Dunne J, Griffies S, Hallberg R, Harrison MJ, Held IM, Jansen MF, John JG, Krasting JP, Langenhorst AR, Legg S, Liang Z, McHugh C, Radhakrishnan A, Reichl BG, Rosati T, Samuels BL, Shao A, Stouffer R, Winton M, Wittenberg AT, Xiang B, Zadeh N, Zhang R (2019) The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J Adv Model Earth Syst 11:3167–3211. doi:https://doi.org/10.1029/2019MS001726

    Google Scholar 

  • Alkhayuon H, Ashwin P, Jackson LC, Quinn C, Wood RA (2019) Basin bifurcations, oscillatory instability and rate-induced thresholds for Atlantic meridional overturning circulation in a global oceanic box model. P R Soc A 475:20190051. doi:https://doi.org/10.1098/rspa.2019.0051

    Google Scholar 

  • Biastoch A, Böning CW (2013) Anthropogenic impacts on the Agulhas Leakage. Geophys Res Lett 40:1138–1143. doi:https://doi.org/10.1002/grl.50243

    Google Scholar 

  • Biastoch A, Durgadoo JV, Morrison AK, Sebille E, Weijer W, Griffies SM (2015) Atlantic multi-decadal oscillation covaries with Agulhas leakage. Nat Commun 6:10082. doi:https://doi.org/10.1038/ncomms10082

    Google Scholar 

  • Böning C, Behrens E, Biastoch A, Getzlaff K, Bamber J (2016) Emerging impact of Greenland meltwater on deep water formation in the North Atlantic Ocean. Nat Geosci 9:523–527. doi:https://doi.org/10.1038/ngeo2740

    Google Scholar 

  • Brodeau L, Koenigk T (2016) Extinction of the northern deep convection in an ensemble of climate model simulations of the 20th and 21st centuries. Clim Dynam 46:2863–2882. doi:https://doi.org/10.1007/s00382-015-2736-5

    Google Scholar 

  • Buckley MW, Marshall J (2016) Observations, inferences and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Rev Geophys 54:5–63. doi:https://doi.org/10.1002/2015RG000493

    Google Scholar 

  • Carvalho JS, Oliveira FSC, Campos EJD (2018) Impacts of the Southern Hemisphere westerlies on the Brazil Current at 30°S. Braz J Geophys 36(3):255–266. doi:https://doi.org/10.22564/rbgf.v36i3.1959

    Google Scholar 

  • Chassignet EP, Hurlburt HE, Smedstad OM, Halliwell GR, Wallcraft AJ, Metzger EJ, Blanton BO, Lozano C, Rao DB, Hogan PJ, Srinivasan A (2006) Generalized vertical coordinates for eddy-resolving global and coastal ocean forecasts. Oceanography 19:118–129. doi:https://doi.org/10.5670/oceanog.2006.95

    Google Scholar 

  • Chen Y, Tung K-K (2018) Global surface warming enhanced by weak Atlantic overturning circulation. Nature 559:387–400. doi:https://doi.org/10.1038/s41586-018-0320-y

    Google Scholar 

  • Cheng W, Chiang JCH, Zhang D (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Climate 26:7187–7197. doi:https://doi.org/10.1175/JCLI-D-12-00496.1

    Google Scholar 

  • Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Rädel G, Stevens B (2015) The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 350(6258):320–324. doi:https://doi.org/10.1126/science.aab3980

    Google Scholar 

  • Core Writing Team, Pachauri RK, Meyer LA (2014) Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 151 p

    Google Scholar 

  • Cunningham SA, Roberts CD, Frajka-Williams E, Hobbs W, Palmer MD, Rayner D, Smeed DA, McCarthy G (2013) Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean. Geophys Res Lett 40:6202–6207. doi:https://doi.org/10.1002/2013GL058464

    Google Scholar 

  • Danabasoglu G, Yeager SG, Kwon Y-O, Tribbia JJ, Phillips AS, Hurrell JW (2012) Variability of the Meridional Overturning Circulation in CCSM4. J Climate 25:5153–5172. doi:https://doi.org/10.1175/JCLI-D-11-00463.1

    Google Scholar 

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee H-C, Lin S-J, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDLs CM2 global couple climate models. Part I: Formulation and simulation characteristics. J Climate 19:643–674. doi:https://doi.org/10.1175/JCLI3629.1

    Google Scholar 

  • Den Toom M, Dijkstra HA, Cimatoribus AA, Drijfhout SS (2012) Effect of atmospheric feedbacks on the stability of the Atlantic Meridional Overturning Circulation. J Climate 25:4081–1096. doi:https://doi.org/10.1175/JCLI-D-11-00467.1

    Google Scholar 

  • Deshayes J, Curry R, Msadek R (2014) CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic. J Climate 27:3298–3317. doi:https://doi.org/10.1175/JCLI-D-12-00700.1

    Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz J-C, Ginoux P, Lin S-J, Austin MDSJ, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee H-C, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Model CM3. J Climate 24:3484–3519. doi:https://doi.org/10.1175/2011JCLI3955.1

    Google Scholar 

  • Drijfhout SS, Weber SL, Swaluv E (2011) The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim Dynam 37:1575–1586. doi:https://doi.org/10.1007/s00382-010-0930-z

    Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. doi:https://doi.org/10.5194/gmd-9-1937-2016

    Google Scholar 

  • Foltz GR, Brandt P, Richter I Rodríguez-Fonseca B, Hernandez F, Dengler M, Rodrigues RR, Schmidt JO, Yu L, Lefevre N, Da Cunha L, McPhaden MJ, Araujo M, Karstensen J, Hahn J, Martín-Rey M, Patricola CM, Poli P, Zuidema P, Hummels R, Perez RC, Hatje V, Lübbecke JF, Polo I, Lumpkin R, Bourlés B, Asuquo F E, Lehodey P, Conchon A, Chang P, Dandin P, Schmid C, Sutton A, Giordani H, Xue Y, Illig S, Losada T, Grodsky SA, Gasparin F, Lee T, Mohino E, Nobre P, Wanninkhof R, Keenlyside N, Garcon V, Sánchez-Gómez E, Nnamchi HC, Drévillon M, Storto A, Remy E, Lazar A, Speich S, Goes M, Dorrington T, Johns WE, Moum JN, Robinson C, Perruche C, de Souza RB, Gaye AT, López-Parages J, Monerie P-A, Castellanos P, Benson NU, Hounkonnou MN, Duhá JT, Laxenaire R, Reul N (2019) The tropical Atlantic observing system. Front Mar Sci 6:206. doi:https://doi.org/10.3389/fmars.2019.00206

    Google Scholar 

  • Foltz GR, Schmid C, Lumpkin R (2015) Transport of surface freshwater from the equatorial to the subtropical North Atlantic Ocean. J Phys Oceanogr 45:1086–1102. doi:https://doi.org/10.1175/JPO-D-14-0189.1

    Google Scholar 

  • Frajka-Williams E, Ansorge IJ, Baer J, Bryden HL, Chidichimo MP, Cunningham SA, Danabasoglu G, Dong S, Donohue KA, Elipot S, Heimbach P, Holliday NP, Hümmels R, Jackson LC, Karstensen J, Lankhorst M, Le Bras IA, Lozier MS, McDonagh EL, Meinen CS, Mercier H, Moat BI, Perez RC, Piecuch CG, Rhein M, Srokosz MA, Trenberth KE, Bacon S, Forget G, Goni G, Kieke D, Koelling J, Lamont T, McCarthy GD, Mertens C, Send U, Smeed DA, Speich S, van den Berg M, Volkov D, Wilson C (2019) Atlantic Meridional Overturning Circulation: Observed transport and variability. Front Mar Sci 6:260. doi:https://doi.org/10.3389/fmars.2019.00260

    Google Scholar 

  • Gent R (2018) A commentary on the Atlantic Meridional Overturning Circulation stability in climate models. Ocean Model 122:57–66. doi:https://doi.org/10.1016/j.ocemod.2017.12.006

    Google Scholar 

  • Griffies SM, Winton M, Anderson WG, Benson Rusty, Delworth TL, Dufour CO, Dunne JP, Goddard P, Morrison AK, Rosati A, Wittenberg AT, Yin J, Zhang R (2015) Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J Climate 28(3):952–977. doi:https://doi.org/10.1175/JCLI-D-14-00353.1

    Google Scholar 

  • Griffies SM, Winton M, Donner LJ, Horowitz LW, Downes SM, Farneti R, Gnanadesikan A, Hurlin WJ, Lee H-C, Liang Z, Palter JB, Samuels BL, Wittenberg AT, Wyman BL, Yin J, Zadeh N (2011) The GFDL-CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J Climate 24:3520–3544. doi:https://doi.org/10.1175/2011JCLI3964.1

    Google Scholar 

  • Guerra LAA, Paiva AM, Chassignet EP (2018) On the translation of Agulhas rings to the western South Atlantic Ocean. Deep-Sea Res Pt I 139:104–113. doi:https://doi.org/10.1016/j.dsr.2018.08.005

    Google Scholar 

  • Haarsma RJ, Campos EJD, Drijfhout S, Hazeleger W, Severijns C (2011) Impacts of interruption of the Agulhas leakage on the tropical Atlantic in coupled ocean-atmosphere simulations. Clim Dynam 36:989–1003. doi:https://doi.org/10.1007/s00382-009-0692-7

    Google Scholar 

  • Hewitt HT, Bell MJ, Chassignet EP, Czaja A (2017) Will highresolution global ocean models benefit coupled predictions on short-range to climate timescales? Ocean Model 120:120–136. doi:https://doi.org/10.1016/j.ocemod.2017.11.002

    Google Scholar 

  • Hirschi JJ-M, Barnier B, Böning C, Biastoch A, Blaker AT, Coward A, Danilov S, Drijfhout S, Getzlaff K, Griffies SM, Hasumi H, Hewitt H, Iovino D, Kawasaki T, Kiss AE, Koldunov N, Marzocchi A, Mecking JV, Moat B, Molines J-M, Myers PG, Penduff T, Roberts M, Treguier A-M, Sein DV, Sidorenko D, Small J, Spence P, Thompson LA, Weijer W, Xu X (2020) The Atlantic Meridional Overturning Circulation in high-resolution models. J Geophys Res-Oceans 125:e2019JC015522. doi:https://doi.org/10.1029/2019JC015522

    Google Scholar 

  • Hsu W-C, Patricola CM, Chang P (2019) The impact of climate model sea surface temperature biases on tropical cyclone simulations. Clim Dynam 53(1–2):173–192. doi:https://doi.org/10.1007/s00382-018-4577-5

    Google Scholar 

  • Huang W, Wang B, Li L, Dong L, Lin P, Yu Y, Zhou T, Liu L, Xu S, Xia K, Pu Y, Wang L, Liu M, Shen S, Hu N, Wang Y, Sun W, Dong W (2014) Variability of the Atlantic meridional overturning circulation in FGOALS-g2. Adv Atmos Sci 31:95–109. doi:https://doi.org/10.1007/s00376-013-2155-7

    Google Scholar 

  • Hummels R, Brandt P, Dengler M, Fischer J, Doris M, Veleda D, Durgadoo JV (2015) Interannual to decadal changes in the western boundary circulation in the Atlantic at 11°S. Geophys Res Lett 42:7615–7622. doi:https://doi.org/10.1002/2015GL065254

    Google Scholar 

  • Jackson L, Kahana R, Graham T, Ringer MA, Woollings T, Mecking JV, Wood RA (2015) Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim Dynam 45:3299–3316. doi:https://doi.org/10.1007/s00382-015-2540-2

    Google Scholar 

  • Jackson LC, Wood RA (2018) Timescales of AMOC decline in response to freshwater forcing. Clim Dynam 51:1333–1350. doi:https://doi.org/10.1007/s00382-017-3957-6

    Google Scholar 

  • Jena P, Azad S, Rajeevan MN (2015) Statistical selection of the optimum models in the CMIP5 database for climate change projections of indian monsoon rainfall. Climate 3:858–875. doi:https://doi.org/10.3390/cli3040858

    Google Scholar 

  • Koltermann KP, Gouretski VV, Jancke K (2011) Hydrographic atlas of the world ocean circulation experiment (WOCE). Volume 3: Atlantic Ocean. International WOCE Project Office, Southampton, 174 p

    Google Scholar 

  • Levitus S (1986) Annual cycle of salinity and salt storage in the World Ocean. J Phys Oceanogr 16:322–343. doi:https://doi.org/10.1175/1520-0485(1986)016%3C0322:ACOSAS%3E2.0.CO;2

    Google Scholar 

  • Liu W, Liu Z (2013) A diagnostic indicator of the stability of the Atlantic Meridional Overturning Circulation in CCSM3. J Climate 26:1926–1938. doi:https://doi.org/10.1175/JCLI-D-11-00681.1

    Google Scholar 

  • Liu W, Liu Z, Brady EC (2014) Why is the AMOC monostable in coupled general circulation models? J Climate 27:2427–2443. doi:https://doi.org/10.1175/JCLI-D-13-00264.1

    Google Scholar 

  • Liu W, Xie S, Zhu J (2017) Overlooked possibility of a collapsed in warming climate. Sci Adv 3(1):e1601666. doi:https://doi.org/10.1126/sciadv.1601666

    Google Scholar 

  • Lozier SM (2012) Overturning in the North Atlantic. Annu Rev Mar Sci 4(1):291–315. doi:https://doi.org/10.1146/annurev-marine-120710-100740

    Google Scholar 

  • Lübbecke JF, Durgadoo JV, Biastoch A (2015) Contribution of increased Agulhas Leakage to tropical Atlantic warming. J Climate 28:9697–9706. doi:https://doi.org/10.1175/JCLI-D-15-0258.1

    Google Scholar 

  • Marengo JA, Souza CM, Thonicke K, Burton C, Halladay K, Betts RA, Alves LM, Soares WR (2018) Changes in climate and land use over the Amazon region: Current and future variability and trends. Front Earth Sci 6:228. doi:https://doi.org/10.3389/feart.2018.00228

    Google Scholar 

  • Marson JM, Wainer I, Mata MM, Liu Z (2014) The impacts of deglacial meltwater forcing on the South Atlantic Ocean deep circulation since the Last Glacial Maximum. Clim Past 10:1723–1734. doi:https://doi.org/10.5194/cp-10-1723-2014

    Google Scholar 

  • Mccarthy GD, Smeed DA, Cunningham SA, Roberts CD (2017) Atlantic Meridional Overturning Circulation. In: Frost M, Baxter J, Buckley P, Dye S, Stoker B (eds) Marine climate change impacts partnership: MCCIP science review 2017, MCCIP Secretariat, Lowestoft, pp 15–21

    Google Scholar 

  • Mccarthy GD, Haigh ID, Hirschi JJ-M, Grist JP, Smeed DA (2015) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521:508–410. doi:https://doi.org/10.1038/nature14491

    Google Scholar 

  • Mccarthy GD, Thorne PW (2018) Atlantic slowdown boosts surface warming. Nature 559:340–341. doi:https://doi.org/10.1038/d41586-018-05712-x

    Google Scholar 

  • Meinen CS, Speich S, Piola AR, Ansorge I, Campos E, Kersalé M, Terre T, Chidichimo MP, Lamont T, Sato OT, Perez RC, Valla D, van den Berg M, Le Hénaff M, Dong S, Garzoli SL (2018) Meridional overturning circulation transport variability at 34.5°S during 2009–2017: Baroclinic and barotropic flows and the dueling influence of the boundaries. Geophys Res Lett 45:4180–4188. doi:https://doi.org/10.1029/2018GL077408

    Google Scholar 

  • Mecking JV, Drijfhout SS, Jackson LC, Andrews MB (2017) The effect of model bias on Atlantic freshwater transport and implications for AMOC bistability. Tellus A 69:1299910. doi:https://doi.org/10.1080/16000870.2017.1299910

    Google Scholar 

  • Mecking JV, Drijfhout SS, Jackson LC, Graham T (2016) Stable AMOC off state in an eddy-permitting coupled climate model. Clim Dynam 47:2455–2470. doi:https://doi.org/10.1007/s00382-016-2975-0

    Google Scholar 

  • Mignac D, Ferreira D, Haines K (2018) South Atlantic meridional transports from NEMO-based simulations and reanalyses. Ocean Sci 14:53–68. doi:https://doi.org/10.5194/os-14-53-2018

    Google Scholar 

  • Mignac D, Ferreira D, Haines K (2019) Decoupled freshwater transport and meridional overturning in the South Atlantic. Geophys Res Lett 46:2178–2186. doi:https://doi.org/10.1029/2018GL081328

    Google Scholar 

  • Patara L, Böning CW (2014) Abyssal ocean warming around Antarctica strengthens the Atlantic overturning circulation. Geophys Res Lett 41:3972–3978. doi:https://doi.org/10.1002/2014GL059923

    Google Scholar 

  • Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change 5:475–480. doi:https://doi.org/10.1038/nclimate2554

    Google Scholar 

  • Reintges A, Martin T, Latif M, Keenlyside NS (2017) Uncertainty in twenty-first century projections of the in CMIP3 and CMIP5 models. Clim Dynam 49:1495–1511. doi:https://doi.org/10.1007/s00382-016-3180-x

    Google Scholar 

  • Reverdin G, Kestenare E, Frankignoul C, Delcroix T (2007) Surface salinity in the Atlantic Ocean (30°S–70°S). Prog Oceanogr 73(1–4):311–340. doi:https://doi.org/10.1016/j.pocean.2006.11.004

    Google Scholar 

  • Rühs S, Schwarzkopf FU, Speich S, Biastoch A (2019) Cold vs. water route — sources for the upper limb of the revisited in a high-resolution ocean model. Ocean Sci 15:489–510. doi:https://doi.org/10.5194/os-15-489-2019

    Google Scholar 

  • Sévellec F, Fedorov AV, Liu W (2017) Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat Clim Change 7:604–612. doi:https://doi.org/10.1038/nclimate3353

    Google Scholar 

  • Smeed DA, Josey SA, Beaulieu C, Johns WE, Moat BI, Frajka-Williams E, Rayner D, Meinen CS, Baringer MO, Bryden HL, McCarthy GD (2018) The North Atlantic Ocean is in a state of reduced overturning. Geophys Res Lett 45:1527–1533. doi:https://doi.org/10.1002/2017GL076350

    Google Scholar 

  • Stouffer RJ, Eyring V, Meehl GA, Bony S, Senior C, Stevens B, Taylor KE (2017) CMIP5 scientific gaps and recommendations for CMIP6. B Am Meteorol Soc 98:95–105. doi:https://doi.org/10.1175/BAMS-D-15-00013.1

    Google Scholar 

  • Talley LD (2008) Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog Oceanogr 78:257–303. doi:https://doi.org/10.1016/j.pocean.2008.05.001

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. B Am Meteorol Soc 93:485–498. doi:https://doi.org/10.1175/BAMS-D-11-00094.1

    Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Thermohaline Circulation. Climatic Change 54:251–267. doi:https://doi.org/10.1023/A:1016168827653

    Google Scholar 

  • Wang C, Zhang L, Lee Z-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. doi:https://doi.org/10.1038/nclimate2118

    Google Scholar 

  • Weaver AJ, Sedlacek J, Eby M, Alexander K, Crespin E, Fichefet T, Philippon-Berthier G, Joos F, Kawamiya M, Matsumoto K, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zickfeld K (2012) Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophys Res Lett 39:L20709. doi:https://doi.org/10.1029/2012GL053763

    Google Scholar 

  • Wigley TML, Raper SCB (1987) Thermal expansion of sea water associated with global warming. Nature 330:127–131. doi:https://doi.org/10.1038/330127a0

    Google Scholar 

  • Yan X, Zhang R, Knutson TR (2018) Underestimated AMOC variability and implications for AMV and predictability in CMIP models. Geophys Res Lett 45:4319–4328. doi:https://doi.org/10.1029/2018GL077378

    Google Scholar 

  • Yin J, Stouffer RJ (2007) Comparison of stability of the Atlantic Thermohaline Circulation in two coupled atmosphere-ocean general circulation models. J Climate 20:4293–4315. doi:https://doi.org/10.1175/JCLI4256.1

    Google Scholar 

  • Zhang R, Sutton R, Danabasoglu G, Delworth TL, Kim WM, Robson J, Yeager SG (2016) Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation”. Science 352(6293):1527. doi:https://doi.org/10.1126/science.aaf1660

    Google Scholar 

  • Zweng MM, Reagan JR, Seidov D, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV, Baranova OK, Weathers K, Paver CR, Smolyar I (2018) World ocean atlas 2018, Volume 2: Salinity. NOAA Atlas NESDIS 82, Maryland, 50 p

Download references

Acknowledgements

We are grateful to the Graduate Program in Geophysics of the Federal University of Bahia (UFBA) for the Project PIE00005/2016 from Infrastructure FAPESB 003/2015. This study was financed partly by the Coordination of Superior Level Staff Improvement (CAPES) — Finance Code 001. We express our gratitude to the Petrobras and the National Agency of Petroleum, Natural Gas and Biofuels (ANP) with respect to the research project Rede de Modelagem e Observação Oceanográfica (REMO) for the infrastructure of the laboratories. We thank the Partnership for Observation of the Global Ocean (POGO) for supporting the first author’s fellowship during the WOCE A8 line and to the staff of the PROFICI/PROPCI programs at the Federal University of Bahia for reviewing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda D. A. O. Matos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, F.D.A.O., Pereira, J. & Dengler, M. Salinity Biases and the Variability of the Atlantic Meridional Overturning Circulation in GFDL-CM3. Ocean Sci. J. 55, 505–520 (2020). https://doi.org/10.1007/s12601-020-0040-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-020-0040-8

Keywords

Navigation