On Robust Multi-Year Tidal Prediction Using T_TIDE

  • Do-Seong ByunEmail author
  • Deirdre Erin Hart


A minimum 19 year tidal prediction dataset covering nodal (satellite) modulation effects is required to determine the Lowest Astronomical Tide (LAT) and Highest Astronomical Tide (HAT) datums. In this study, we explore the ability of a widely used conventional standard harmonic prediction program, T_TIDE ‘t_predic.m’ from Pawlowicz et al. (2002), to produce accurate continuous multi-year predictions. Comparisons are made with the more recent tidal prediction program, UTide ‘ut_reconstr.m’ from Codiga (2011). Tidal height records for two different regimes are employed: for diurnal tides data are employed from Cape Roberts in Antarctica, while for semi-diurnal tides data are used from Incheon, Gyeonggi Bay, Korea. Results demonstrate an issue arises in continuous multi-year tidal predictions made via T_TIDE, due to the program’s single calculation (fixed) of nodal modulation corrections (NMC). We explain a modified NMC update method that succe ss fully solves this problem, rendering the program of use for accurate continuous multi-year tidal predictions.


tidal harmonic prediction nodal factors nodal angles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the anonymous reviewers for very helpful comments, and gratefully thank Ms. Hyowon Kim for her kind assistance with Matlab script coding and the drafting of figures.


  1. Bell C, Vassie JM, Woodworth PL (1999) POL/PSMSL Tidal Analysis Software Kit 2000 (TASK-2000). Permanent Service for Mean Sea Level. CCMS Proudman Oceanographic Laboratory, Bidston Observatory, Birkenhead, 20 pGoogle Scholar
  2. Byun D-S, Cho CW (2009) Exploring conventional tidal prediction schemes for improved coastal numerical forecast modeling. Ocean Model 28:193–202. doi: CrossRefGoogle Scholar
  3. Cartwright DE, Tayler RJ (1971) New computations of the tide-generating potential. Geophys J Int 23:45–73CrossRefGoogle Scholar
  4. Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys J Int 33:253–264CrossRefGoogle Scholar
  5. Codiga DL (2011) Unified tidal analysis and prediction using the UTide matlab functions. University of Rhode Island, Narragansett, 59 pGoogle Scholar
  6. Courtier A (1938) Classification of tides in four types. In: Conférences sur les marées, Paris, pp 50-58Google Scholar
  7. Foreman MGG (1977) Manual for tidal heights analysis and prediction. Institute of Ocean Sciences, Pacific Marine Science Report 77-10, 97 pGoogle Scholar
  8. Foreman MGG, Cherniawsky JY, Ballantyne VA (2009) Versatile harmonic tidal analysis: Improvements and applications. J Atmos Ocean Tech 26:806–817 doi: CrossRefGoogle Scholar
  9. Foreman MGG, Neufeld ET (1991) Harmonic tidal analyses of long time series. Int Hydrogr Rev LXVIII(I):85–109Google Scholar
  10. Leffler KE, Jay DA (2009) Enhancing tidal harmonic analysis: Robust (hybrid L1/L2) solutions. Cont Shelf Res 29:78–88. doi: CrossRefGoogle Scholar
  11. IHO (2018) Resolution on datums and benchmarks A2.5 3/1919. International Hydrographic Organization. Accessed 5 Mar 2019Google Scholar
  12. Pawlowicz R (2011) Rich Pawlowicz’s matlab stuff. Accessed 5 Mar 2019Google Scholar
  13. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937. doi: CrossRefGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Science+Business Media B.V. 2019

Authors and Affiliations

  1. 1.Ocean Research DivisionKorea Hydrographic and Oceanographic AgencyBusanKorea
  2. 2.Department of Geography, College of ScienceUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations