Advertisement

Ocean Science Journal

, Volume 53, Issue 2, pp 179–189 | Cite as

An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System

  • You-Soon Chang
  • Shaoqing Zhang
  • Anthony Rosati
  • Gabriel A. Vecchi
  • Xiaosong Yang
Article
  • 76 Downloads

Abstract

An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, “observations” drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the “identical” twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.

Keywords

observing system simulation experiment coupled data assimilation deep Argo array 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson JL (2003) A local least square framework for ensemble filtering. Mon Weather Rev 131:634–642CrossRefGoogle Scholar
  2. Balmaseda MA, Trenberth KE, Kallen E (2013) Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett 40:1–6. doi:10.1002/grl.50382CrossRefGoogle Scholar
  3. Chang Y-S, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dynam 40:775–803. doi:10.1007/s00382-012-1412-2CrossRefGoogle Scholar
  4. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938CrossRefGoogle Scholar
  5. Desbruyères D, McDonagh E, King B, Garry F, Blaker A, Moat B, Mercier H (2014) Full-depth temperature trends in the Northeastern Atlantic through the early 21st century. Geophys Res Lett 41:7971–7979. doi:10.1002/2014GL061844.CrossRefGoogle Scholar
  6. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee H-C, Lin S-J, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Climate 19(5):643–674. doi:10.1175/JCLI3629.1Google Scholar
  7. Ha S-Y, Snyder CM (2014) Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon Weather Rev 142:1489–1508CrossRefGoogle Scholar
  8. Kobayashi T (2013) Deep NINJA collects profiles down to 4,000 meters. Sea Technol 54:41–44Google Scholar
  9. Kouketsu S, Doi T, Kawano T, Masuda S, Sugiura N, Sasaki Y, Toyoda T, Igarashi H, Kawai Y, Katsumata K, Uchida H, Fukasawa M, Awaji T (2011) Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J Geophys Res 116:C03012. doi:10.1029/2010JC006464CrossRefGoogle Scholar
  10. Kwon KM, Choi B-J, Lee S-H, Kim YH, Seo G-H, Cho Y-K (2016) Effect of model error representation in the Yellow and East China Sea modeling system based on the ensemble Kalman filter. Ocean Dynam 66:263–283CrossRefGoogle Scholar
  11. Johnson GC, Lyman JM, Purkey SG (2015) Informing Deep Argo array design using Argo and full-depth hydrographic section data. J Atmos Ocean Tech 32:2187–2198. doi:10.1175/JTECHD-15-0139.1CrossRefGoogle Scholar
  12. Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM (2012) World ocean heat content and thermosteric sea level change (0–2000m), 1955–2010. Geophys Res Lett 39:L10603. doi:10.1029/2012GL051106CrossRefGoogle Scholar
  13. Lin S-J (2004) A “vertically Lagrangian” finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307CrossRefGoogle Scholar
  14. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DA, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi:10.1038/nature09043CrossRefGoogle Scholar
  15. Masuda S, Awaji T, Sugiura N, Matthews JP, Toyoda T, Kawai Y, Doi T, Kouketsu S, Igarashi H, Katsumata K, Uchida H, Kawano T, Fukasawa M (2010) Simulated rapid warming of abyssal North Pacific waters. Science 329(5989):319–322. doi:10.1126/science.1188703CrossRefGoogle Scholar
  16. McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys Res Lett 39:L19609Google Scholar
  17. Oke PR, Balmaseda MA, Benkiran M, Cummings JA, Dombrowsky E, Fujii Y, Guinehut S, Larnicol G, Le Traon PY, Martin MJ (2009) Observing system evaluations using GODAE systems. Oceanography 22(3):144–153. doi:10.5670/oceanog.2009.72CrossRefGoogle Scholar
  18. Pickart RS, Spall MA (2007) Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J Phys Oceanogr 37:2207–2227CrossRefGoogle Scholar
  19. Purkey SG, Johnson GC (2010) Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J Climate 23(23):6336–6351. doi:10.1175/2010JCLI3682.1CrossRefGoogle Scholar
  20. Roemmich D, Church J, Gilson J, Monselesan D, Sutton P, Wijffels S (2015) Unabated planetary warming and its ocean structure since 2006. Nat Clim Change 5:240–245. doi:10.1038/nclimate2513CrossRefGoogle Scholar
  21. Le Reste S, Dutreuil V, Andre X, Thierry V, Renaut C, Le Traon PY, Maze G (2016) “Deep-Arvor”: a new profiling float to extend the Argo observations down to 4000m depth. J Atmos Ocean Tech 33(5):1039–1055. doi:10.1175/JTECH-D-15-0214.1CrossRefGoogle Scholar
  22. Song YT, Colberg F (2011) Deep ocean warming assessed from altimeters, gravity recovery and climate experiment, in situ measurements, and a non-Boussinesq ocean general circulation model. J Geophys Res 116:C02020. doi:10.1029/2010JC006601Google Scholar
  23. Stouffer RJ, Weaver AJ, Eby M (2004) A method for obtaining pretwentieth century initial conditions for use in climate change studies. Clim Dynam 23:327–339CrossRefGoogle Scholar
  24. Stouffer RJ, Seidov D, Haupt BJ (2007) Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J Climate 20:436–448CrossRefGoogle Scholar
  25. Willis JK (2010) Can in-situ floats and satellite altimeters detect changes in Atlantic Ocean overturning? Geophys Res Lett 37:L06602. doi:10.1029/2010GL042372CrossRefGoogle Scholar
  26. Zhang S, Harrison MJ, Rosati A, Wittenberg AT (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564CrossRefGoogle Scholar
  27. Zhang S, Rosati A (2010) An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon Weather Rev 138:3905–3931CrossRefGoogle Scholar
  28. Zhang S, Rosati A, Delworth TL (2010) The adequacy of observing systems in monitoring the Atlantic meridional overturning circulation and North Atlantic climate. J Climate 23:5311–5324CrossRefGoogle Scholar
  29. Zhang S, Chang Y-S, Yang X, Rosati A (2014) Balanced and coherent climate estimation by combining data with a biased coupled model. J Climate 27:1302–1314. doi:10.1175/JCLI-D-13-00260.1CrossRefGoogle Scholar
  30. Zhang L, Delworth TL (2016) Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL model. J Geophys Res-Oceans 121:5825–5846. doi:10.1002/2016JC011790CrossRefGoogle Scholar
  31. Zilberman N, Maze G (2015) Report on the deep Argo implementation workshop. IFREMER Doc. LPO-15-04, 36 pGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Nature B.V. 2018

Authors and Affiliations

  • You-Soon Chang
    • 1
  • Shaoqing Zhang
    • 2
    • 5
  • Anthony Rosati
    • 2
    • 3
  • Gabriel A. Vecchi
    • 2
    • 4
  • Xiaosong Yang
    • 2
    • 3
  1. 1.Department of Earth Science EducationKongju National UniversityGongjuKorea
  2. 2.Geophysical Fluid Dynamics LaboratoryNOAAPrincetonUSA
  3. 3.University Corporation for Atmospheric ResearchBoulderUSA
  4. 4.Department of GeosciencePrinceton University and Princeton Environmental InstitutePrincetonUSA
  5. 5.Key Laboratory of Physical OceanographyOcean University of China and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations