Ocean Science Journal

, Volume 53, Issue 1, pp 91–99 | Cite as

Development and Application of an Acoustic System for Harmful Algal Blooms (HABs, Red Tide) Detection using an Ultrasonic Digital Sensor

Article
  • 75 Downloads

Abstract

The overgrowth of phytoplankton leads to negative effects such as harmful algal blooms (HABs, also called red tides) in marine environments. The HAB species Cochlodinium polykrikoides (C. polykrikoides) appears frequently in Korea during summer. In this study, we developed a real-time acoustic detection and remote-control system to detect red tides using an ultrasonic digital sensor. In the laboratory, the acoustic signals increased as the number of cells increased. At the same time, for field application, we deployed the system near the southern coast of Korea, where red tides frequently occurred in summer seasons 2013–2015. The system developed here detected red tides in situ, with a good correlation between the acoustic signals and C. polykrikoides populations. These results suggest that it may be useful for early detection of red tides.

Keywords

harmful algal blooms red tide Cochlodinium polykrikoides real-time acoustic detection system ultrasonic digital sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anglès S, Jordi A, Garcès E, Masó M, Basterretxea G (2008) High-resolution spatio-temporal distribution of a coastal phytoplankton bloom using laser in situ scattering and transmissometry (LISST). Harmful Algae 7(6):808–816CrossRefGoogle Scholar
  2. Ahn YH, Shanmugam P, Chang KI, Moon JE, Ryu JH (2005) Spatial and temporal aspects of phytoplankton blooms in complex ecosystems off the Korean coast from satellite ocean color observations. Ocean Sci J 40:67–78CrossRefGoogle Scholar
  3. Blanc S, Mosto P, Benitez C, Juárez R, Milou M, Lascalea G (1998) Acoustical response of phytoplankton volume scatterers at ultrasonic frequencies as an indicator of pollution in sea waters. WIT Trans Ecol Envir 18:231–240Google Scholar
  4. Blanc S, Benitez CE, De Milou MIE, Mosto P, Lascalea G, Juarez RE (2000) Acoustical behaviour of phytoplanktonic algae. Acoust Lett 23(9):175–182Google Scholar
  5. Bok TH, Paeng DG, Kim E, Na J, Kang D (2010) Ultrasound backscattered power from Cochlodinium polykrikoides, the main red tide species in the Southern Sea of Korea. J Plankton Res 32(4):503–514CrossRefGoogle Scholar
  6. Bok TH, Na J, Paeng DG (2013) Diel variation in high-frequency acoustic backscatter from Cochlodinium polykrikoides. J Acoust Soc Am 134(2):EL140–EL146CrossRefGoogle Scholar
  7. Clay CS, Medwin H (1977) Acoustical oceanography: principles and applications. John Wiley and Sons, New York, 185 pGoogle Scholar
  8. Crawford G, Farmer D (1987) On the spatial distribution of ocean bubbles. J Geophys Res 92:8231–8243CrossRefGoogle Scholar
  9. De Santo RS (1978) Concepts of applied ecology. Springer Verlag, New York, 79 pCrossRefGoogle Scholar
  10. Foote K, Stanton T (2000) Chapter 6: acoustical methods. In: Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley ME (eds) Zooplankton methodology manual. Elsevier Academic Press, London, pp 223–258CrossRefGoogle Scholar
  11. Guillard RRL (1975) Culture of marine invertebrate animals. Plenum Press, New York, 338 pGoogle Scholar
  12. Holliday D, Pieper R (1980) Volume scattering strength and zooplankton distributions at acoustic frequencies between 0.5 and 3 MHz. J Acoust Soc Am 67(1):135–146CrossRefGoogle Scholar
  13. Weiss JB, Provenzale A (2008) Transport and mixing in geophysical flows. Springer Verlag, New York, 222 pCrossRefGoogle Scholar
  14. Jeong SO, An GH (2011) The fluctuations of Cochlodinium polykrikoides blooms in coastal waters of Korea. In: Proceedings of the Korean Society of Environment and Ecology Conference, Daegu, 2011, pp 57–58Google Scholar
  15. Johnson RK (1977) Sound scattering from a fluid sphere revisited. J Acoust Soc Am 61(2):375–377CrossRefGoogle Scholar
  16. Kang D, Lim S, Lee H, Doh J, Lee YH, Choi JW (2013) Development and evaluation of real-time acoustic detection system of harmful red-tide using ultrasonic sound. Ocean Polar Res 35(1):15–26CrossRefGoogle Scholar
  17. Kim E, Lee H, Na J, Choi JW, Kang D (2010) 5-MHz acousticbackscatter measurements of Cochlodinium polykrikoides blooms in Korean coastal waters. ICES J Mar Sci 67(8):1759–1765CrossRefGoogle Scholar
  18. Kim HG, Jung CS, Lim WA, Lee CK, Kim SY, Youn SH, Cho YC, Lee SG (2001) The spatio-temporal progress of Cochlodinium polykrikoides blooms in the coastal waters of Korea. Korean J Fish Aquat Sci 34(6):691–696Google Scholar
  19. Kim H, Bok TH, Paeng DG, Kim J, Nam KH, Lee JB, Shah MMR (2017) Mobility of Amphidinium carterae Hulburt measured by high-frequency ultrasound. J Acoust Soc Am 141(4):EL395–EL401CrossRefGoogle Scholar
  20. Kudela R, Gobler C (2011) Harmful dinoflagellate blooms caused by Cochlodinium sp. Global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71–86CrossRefGoogle Scholar
  21. Loukas A, Simonetto A, Leus G (2015) Distributed autoregressive moving average graph filters. IEEE Signal Proc Let 22(11): 1931–1935CrossRefGoogle Scholar
  22. Lim WA, Lee YS, Lee SG (2008) Characteristic of environmental factors related to outbreak and decline of Cochlodinium polykrikoides bloom in the southeast coastal waters of Korea, 2007. J Korean Soc Oceangr 13(3):325–332Google Scholar
  23. Lim SH (2013) Development of the integrated acoustic detection system for harmful algal blooms (HABs) using ultrasonic wave. Ph.D Thesis, Hanyang University, 149 pGoogle Scholar
  24. Lee CK, Kim HC, Lee SG, Jung CS, Kim HG, Lim WA (2001) Abundance of harmful algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the coastal area of south sea of Korea and their effects of temperature, salinity, irradiance and nutrient on the growth in culture. J Korean Fish Soc 34:536–544Google Scholar
  25. Lee JHW, Hodgkiss IJ, Wong KTM, Lam IHY (2005) Real time observations of coastal algal blooms by and early warning system. Estuar Coast Shelf S 65:172–190CrossRefGoogle Scholar
  26. Matsuoka K, Iwataki M, Kawami H (2008) Morphology and taxonomy of chain-forming species of the genus Cochlodinium (Dinophyceae). Harmful Algae 7(3):261–270CrossRefGoogle Scholar
  27. Medwin H, Clay CS (1998) Chapter 9- Biomass echoes, reverberation, and scattering models. In: Medwin H, Clay CS (eds) Fundamentals of acoustical oceanography. Academic Press, New York, pp 348–404CrossRefGoogle Scholar
  28. NFRDI (2014) Standard of harmful algal blooms forecast in Korea. National Fisheries Research and Development Institute (NFRDI). http://www.nifs.go.kr/redtide/new/map/map.jsp Accessed 08 Mar 2014Google Scholar
  29. Rabalais NN, Turner RE, Diaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66(7): 1528–1537CrossRefGoogle Scholar
  30. Rhode LL, Mackenzie AL, Kaspar HF, Todd KE (2001) Harmful algae and mariculture in New Zealand. ICES J Mar Sci 58:398–403CrossRefGoogle Scholar
  31. Seo PS, Lee SJ, Kim Y, Lee JH, Kim HG, Lee JD (1998) Axenic culture production and growth of a Dinoflagellate, Cochlodinium polykrikoides. J Korean Fish Soc 31(1):71–76Google Scholar
  32. Stanton TK, Chu D, Wiebe PH (1996) Acoustic scattering characteristics of several zooplankton groups. ICES J Mar Sci 53:289–295CrossRefGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Maritime Security Research CenterKIOSTAnsanKorea
  2. 2.Library of Marine Samples, South Sea Research InstituteKIOSTGeojeKorea
  3. 3.Department of Ocean System Engineering, College of Ocean ScienceJeju National UniversityJejuKorea

Personalised recommendations